Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(15)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34972095

RESUMO

Two-dimensional (2D) polar materials experience an in-plane charge transfer between different elements due to their electron negativities. When they form vertical heterostructures, the electrostatic force triggered by such charge transfer plays an important role in the interlayer bonding beyond van der Waals (vdW) interaction. Our comprehensive first principle study on the structural stability of the 2D SiC/GeC hybrid bilayer heterostructure has found that the electrostatic interlayer interaction can induce theπ-πorbital hybridization between adjacent layers under different stacking and out-of-plane species ordering, with strong hybridization in the cases of Si-C and C-Ge species orderings but weak hybridization in the case of the C-C ordering. In particular, the attractive electrostatic interlayer interaction in the cases of Si-C and C-Ge species orderings mainly controls the equilibrium interlayer distance and the vdW interaction makes the system attain a lower binding energy. On the contrary, the vdW interaction mostly controls the equilibrium interlayer distance in the case of the C-C species ordering and the repulsive electrostatic interlayer force has less effect. Interesting finding is that the band structure of the SiC/GeC hybrid bilayer is sensitive to the layer-layer stacking and the out-of-plane species ordering. An indirect band gap of 2.76 eV (or 2.48 eV) was found under the AA stacking with Si-C ordering (or under the AB stacking with C-C ordering). While a direct band gap of 2.00-2.88 eV was found under other stacking and species orderings, demonstrating its band gap tunable feature. Furthermore, there is a charge redistribution in the interfacial region leading to a built-in electric field. Such field will separate the photo-generated charge carriers in different layers and is expected to reduce the probability of carrier recombination, and eventually give rise to the electron tunneling between layers.

2.
Phys Chem Chem Phys ; 21(14): 7298-7304, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30892367

RESUMO

In this study, bilayer phosphorene samples were subjected to high pressure using a Diamond Anvil Cell (DAC) and their vibrational properties were studied via in situ Raman spectroscopy. Systematic shifting in the Raman frequency of A1g, B2g, and A2g modes was observed and theoretical calculations were performed to understand the relationship between the strain and the vibrational properties. The changes in the vibration modes under high pressure are found to reflect the deformation in the structure and its stiffness. Firstly, the study shows a substantial pressure-induced enhancement of the interactions between atoms for the out-plane mode A1g, mainly due to the directional nature of the lone pair of electrons and charge transfer. However, these interactions and the observed blue shift of the A1g Raman peak are much weaker than those in bulk black phosphorous. Secondly, while a significant enhancement of the atomic interactions due to bond length change is also observed for the in-plane mode B2g along the zigzag direction, there is almost negligible effect on the in-plane mode A2g along the armchair direction. The results add to the knowledge on mechanical properties and strain engineering in phosphorene towards novel functionalities and applications of this intriguing two-dimensional (2D) material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA