Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Indic ; 146: 109866, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36777177

RESUMO

Extensively managed grasslands are globally recognized for their high biodiversity value. Over the past century, a continuous loss and degradation of grassland habitats has been observed across Europe that is mainly attributable to agricultural intensification and land abandonment. Particularly insects have suffered from the loss of grassland habitats due to land-use change and the decrease in habitat quality, either due to an increase in livestock density, higher mowing frequency, and an increase in nitrogen fertilization, or by abandonment. However, only a few studies have used nationwide datasets to analyse the effects of land cover and land-use intensity on insects. It further remains largely unexplored how these effects are modulated by species traits, i.e. habitat specialisation and mobility. Using nationwide butterfly data originating from the German Butterfly Monitoring Scheme, we investigated the effect of three indicators related to land cover and agricultural land-use intensity on species richness as well as trait composition of butterfly communities. Based on agricultural census data at the municipality scale, we calculated the share of permanent grasslands (measure of habitat availability), the total livestock density (proxy for organic fertilization) and the livestock density of domestic herbivores (proxy for management intensity in grasslands) within a 2 km buffer surrounding each butterfly transect. To analyse the relationships between butterflies and indicators of land cover and land-use intensity, we applied generalised linear mixed effect models. We found a negative relationship between butterfly species richness and the livestock density of domestic herbivores. Further, the ratio of butterfly generalist to specialist species shifted towards generalists and the size of butterflies increased with higher herbivore livestock density, indicating a shift in communities towards mobile habitat generalists. Our results are in accordance with previous studies carried out across smaller geographic extents, highlighting the importance of low herbivore livestock densities to halt the loss of pollinating insects and safeguard biodiversity and associated ecosystem services in agricultural landscapes. We here demonstrate that indicators based on livestock distribution data at the municipality scale can provide insights into processes and spatial diversity patterns of butterflies at the national level. Further, we highlight potentials and limitations of using agricultural census data to quantify and assess effects of land cover and land-use intensity on butterflies, and make recommendations for further research needs.

2.
J Environ Manage ; 250: 109479, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31499467

RESUMO

Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.


Assuntos
Ecologia , Ecossistema , Europa (Continente)
3.
Sci Rep ; 14(1): 13856, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879632

RESUMO

Floral nectar sugar composition is assumed to reflect the nutritional demands and foraging behaviour of pollinators, but the relative contributions of evolutionary and abiotic factors to nectar sugar composition remain largely unknown across the angiosperms. We compiled a comprehensive dataset on nectar sugar composition for 414 insect-pollinated plant species across central Europe, along with phylogeny, paleoclimate, flower morphology, and pollinator dietary demands, to disentangle their relative effects. We found that phylogeny was strongly related with nectar sucrose content, which increased with the phylogenetic age of plant families, but even more strongly with historic global surface temperature. Nectar sugar composition was also defined by floral morphology, though it was not related to our functional measure of pollinator dietary demands. However, specialist pollinators of current plant-pollinator networks predominantly visited plant species with sucrose-rich nectar. Our results suggest that both physiological mechanisms related to plant water balance and evolutionary effects related to paleoclimatic changes have shaped floral nectar sugar composition during the radiation and specialisation of plants and pollinators. As a consequence, the high velocity of current climate change may affect plant-pollinator interaction networks due to a conflicting combination of immediate physiological responses and phylogenetic conservatism.


Assuntos
Evolução Biológica , Flores , Filogenia , Néctar de Plantas , Polinização , Néctar de Plantas/metabolismo , Néctar de Plantas/química , Polinização/fisiologia , Flores/metabolismo , Flores/fisiologia , Açúcares/metabolismo , Açúcares/análise , Animais , Insetos/fisiologia , Sacarose/metabolismo , Europa (Continente) , Magnoliopsida/fisiologia , Magnoliopsida/metabolismo , Mudança Climática
4.
J Exp Biol ; 214(Pt 9): 1407-10, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21490248

RESUMO

Chemical communication plays a major role in the organisation of ant societies, and is mimicked to near perfection by certain large blue (Maculinea) butterflies that parasitise Myrmica ant colonies. The recent discovery of differentiated acoustical communication between different castes of ants, and the fact that this too is mimicked by the butterflies, adds a new component of coevolutionary complexity to a fascinating multitrophic system of endangered species, and it could inspire new ways to engage the public in their conservation.


Assuntos
Comunicação Animal , Borboletas/fisiologia , Conservação dos Recursos Naturais , Acústica , Animais , Formigas/parasitologia , Evolução Biológica , Opinião Pública
5.
Sci Data ; 7(1): 351, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060594

RESUMO

Trait-based analyses explaining the different responses of species and communities to environmental changes are increasing in frequency. European butterflies are an indicator group that responds rapidly to environmental changes with extensive citizen science contributions to documenting changes of abundance and distribution. Species traits have been used to explain long- and short-term responses to climate, land-use and vegetation changes. Studies are often characterised by limited trait sets being used, with risks that the relative roles of different traits are not fully explored. Butterfly trait information is dispersed amongst various sources and descriptions sometimes differ between sources. We have therefore drawn together multiple information sets to provide a comprehensive trait database covering 542 taxa and 25 traits described by 217 variables and sub-states of the butterflies of Europe and Maghreb (northwest Africa) which should serve for improved trait-based ecological, conservation-related, phylogeographic and evolutionary studies of this group of insects. We provide this data in two forms; the basic data and as processed continuous and multinomial data, to enhance its potential usage.


Assuntos
Borboletas/classificação , África do Norte , Animais , Evolução Biológica , Conservação dos Recursos Naturais , Bases de Dados Factuais , Ecologia , Europa (Continente) , Filogenia
6.
Philos Trans R Soc Lond B Biol Sci ; 374(1769): 20180202, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30967080

RESUMO

The range of hosts exploited by a parasite is determined by several factors, including host availability, infectivity and exploitability. Each of these can be the target of natural selection on both host and parasite, which will determine the local outcome of interactions, and potentially lead to coevolution. However, geographical variation in host use and specificity has rarely been investigated. Maculinea (= Phengaris) butterflies are brood parasites of Myrmica ants that are patchily distributed across the Palæarctic and have been studied extensively in Europe. Here, we review the published records of ant host use by the European Maculinea species, as well as providing new host ant records for more than 100 sites across Europe. This comprehensive survey demonstrates that while all but one of the Myrmica species found on Maculinea sites have been recorded as hosts, the most common is often disproportionately highly exploited. Host sharing and host switching are both relatively common, but there is evidence of specialization at many sites, which varies among Maculinea species. We show that most Maculinea display the features expected for coevolution to occur in a geographic mosaic, which has probably allowed these rare butterflies to persist in Europe. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.


Assuntos
Formigas/parasitologia , Coevolução Biológica , Borboletas/fisiologia , Interações Hospedeiro-Parasita , Comportamento de Nidação , Simbiose , Animais , Europa (Continente) , Especificidade da Espécie
7.
Sci Total Environ ; 613-614: 1376-1384, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29898505

RESUMO

Global change effects on biodiversity and human wellbeing call for improved long-term environmental data as a basis for science, policy and decision making, including increased interoperability, multifunctionality, and harmonization. Based on the example of two global initiatives, the International Long-Term Ecological Research (ILTER) network and the Group on Earth Observations Biodiversity Observation Network (GEO BON), we propose merging the frameworks behind these initiatives, namely ecosystem integrity and essential biodiversity variables, to serve as an improved guideline for future site-based long-term research and monitoring in terrestrial, freshwater and coastal ecosystems. We derive a list of specific recommendations of what and how to measure at a monitoring site and call for an integration of sites into co-located site networks across individual monitoring initiatives, and centered on ecosystems. This facilitates the generation of linked comprehensive ecosystem monitoring data, supports synergies in the use of costly infrastructures, fosters cross-initiative research and provides a template for collaboration beyond the ILTER and GEO BON communities.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental/métodos , Política Ambiental , Tomada de Decisões , Monitoramento Ambiental/estatística & dados numéricos
8.
Sci Total Environ ; 574: 191-203, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27636004

RESUMO

Cross-system studies on the response of different ecosystems to global change will support our understanding of ecological changes. Synoptic views on the planet's two main realms, the marine and terrestrial, however, are rare, owing to the development of rather disparate research communities. We combined questionnaires and a literature review to investigate how the importance of anthropogenic drivers of biodiversity change differs among marine and terrestrial systems and whether differences perceived by marine vs. terrestrial researchers are reflected by the scientific literature. This included asking marine and terrestrial researchers to rate the relevance of different drivers of global change for either marine or terrestrial biodiversity. Land use and the associated loss of natural habitats were rated as most important in the terrestrial realm, while the exploitation of the sea by fishing was rated as most important in the marine realm. The relevance of chemicals, climate change and the increasing atmospheric concentration of CO2 were rated differently for marine and terrestrial biodiversity respectively. Yet, our literature review provided less evidence for such differences leading to the conclusion that while the history of the use of land and sea differs, impacts of global change are likely to become increasingly similar.


Assuntos
Biodiversidade , Mudança Climática , Ecologia , Dióxido de Carbono/análise , Biologia Marinha
9.
Mol Ecol ; 16(18): 3828-38, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17850549

RESUMO

Habitat fragmentation may interrupt trophic interactions if herbivores and their specific parasitoids respond differently to decreasing connectivity of populations. Theoretical models predict that species at higher trophic levels are more negatively affected by isolation than lower trophic level species. By combining ecological data with genetic information from microsatellite markers we tested this hypothesis on the butterfly Maculinea nausithous and its specialist hymenopteran parasitoid Neotypus melanocephalus. We assessed the susceptibility of both species to habitat fragmentation by measuring population density, rate of parasitism, overall genetic differentiation (theta(ST)) and allelic richness in a large metapopulation. We also simulated the dynamics of genetic differentiation among local populations to asses the relative effects of migration rate, population size, and haplodiploid (parasitoid) and diploid (host) inheritance on metapopulation persistence. We show that parasitism by N. melanocephalus is less frequent at larger distances to the nearest neighbouring population of M. nausithous hosts, but that host density itself is not affected by isolation. Allelic richness was independent of isolation, but the mean genetic differentiation among local parasitoid populations increased with the distance between these populations. Overall, genetic differentiation in the parasitoid wasp was much greater than in the butterfly host and our simulations indicate that this difference is due to a combination of haplodiploidy and small local population sizes. Our results thus support the hypothesis that Neotypus parasitoid wasps are more sensitive to habitat fragmentation than their Maculinea butterfly hosts.


Assuntos
Borboletas/fisiologia , Vespas/fisiologia , Alelos , Migração Animal , Animais , Borboletas/genética , Borboletas/parasitologia , Simulação por Computador , Meio Ambiente , Variação Genética , Interações Hospedeiro-Parasita , Densidade Demográfica , Dinâmica Populacional , Isolamento Social , Vespas/genética
10.
Oikos ; 116(3): 461-472, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32367896

RESUMO

Environmental change is not likely to act on biodiversity in a random manner, but rather according to species traits that affect assembly processes, thus, having potentially serious consequences on ecological functions. We investigated the effects of anthropogenic land use on functional richness of local hoverfly communities of 24 agricultural landscapes across temperate Europe. A multivariate ordination separated seven functional groups based on resource use, niche characteristics and response type. Intensive land use reduced functional richness, but each functional group responded in a unique way. Species richness of generalist groups was nearly unaffected. Local habitat quality mainly affected specialist groups, while land use affected intermediate groups of rather common species. We infer that high species richness within functional groups alone is no guarantee for maintaining functional richness. Thus, it is not species richness per se that improves insurance of functional diversity against environmental pressures but the degree of dissimilarity within each functional group.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA