Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 568(7750): E1, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30899103

RESUMO

In this Letter, the spelling of author Benny Trakhtenbrot was corrected; the affiliation for author Sylvain Veilleux was amended; and a new ref. 9 was added to the Abstract with subsequent references renumbered; these errors have been corrected online.

2.
Nature ; 563(7730): 214-216, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30405225

RESUMO

Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes1. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous quasars2,3 and others showing no such association4,5. Recent observations have shown that a black hole is likely to become heavily obscured behind merger-driven gas and dust, even in the early stages of the merger, when the galaxies are well separated6-8 (5 to 40 kiloparsecs). Merger simulations further suggest that such obscuration and black-hole accretion peaks in the final merger stage, when the two galactic nuclei are closely separated9 (less than 3 kiloparsecs). Resolving this final stage requires a combination of high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray observations to detect highly obscured sources. However, large numbers of obscured luminous accreting supermassive black holes have been recently detected nearby (distances below 250 megaparsecs) in X-ray observations10. Here we report high-resolution infrared observations of hard-X-ray-selected black holes and the discovery of obscured nuclear mergers, the parent populations of supermassive-black-hole mergers. We find that obscured luminous black holes (bolometric luminosity higher than 2 × 1044 ergs per second) show a significant (P < 0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a sample of inactive galaxies with matching stellar masses and star formation rates (1.1 per cent), in agreement with theoretical predictions. Using hydrodynamic simulations, we confirm that the excess of nuclear mergers is indeed strongest for gas-rich major-merger hosts of obscured luminous black holes in this final stage.

3.
Nature ; 549(7673): 488-491, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28959966

RESUMO

The majority of the accreting supermassive black holes in the Universe are obscured by large columns of gas and dust. The location and evolution of this obscuring material have been the subject of intense research in the past decades, and are still debated. A decrease in the covering factor of the circumnuclear material with increasing accretion rates has been found by studies across the electromagnetic spectrum. The origin of this trend may be driven by the increase in the inner radius of the obscuring material with incident luminosity, which arises from the sublimation of dust; by the gravitational potential of the black hole; by radiative feedback; or by the interplay between outflows and inflows. However, the lack of a large, unbiased and complete sample of accreting black holes, with reliable information on gas column density, luminosity and mass, has left the main physical mechanism that regulates obscuration unclear. Here we report a systematic multi-wavelength survey of hard-X-ray-selected black holes that reveals that radiative feedback on dusty gas is the main physical mechanism that regulates the distribution of the circumnuclear material. Our results imply that the bulk of the obscuring dust and gas is located within a few to tens of parsecs of the accreting supermassive black hole (within the sphere of influence of the black hole), and that it can be swept away even at low radiative output rates. The main physical driver of the differences between obscured and unobscured accreting black holes is therefore their mass-normalized accretion rate.

4.
Nature ; 521(7552): 332-5, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25993963

RESUMO

Type Ia supernovae are thought to be the result of a thermonuclear runaway in carbon/oxygen white dwarfs, but it is uncertain whether the explosion is triggered by accretion from a non-degenerate companion star or by a merger with another white dwarf. Observations of a supernova immediately following the explosion provide unique information on the distribution of ejected material and the progenitor system. Models predict that the interaction of supernova ejecta with a companion star or circumstellar debris lead to a sudden brightening lasting from hours to days. Here we present data for three supernovae that are likely to be type Ia observed during the Kepler mission with a time resolution of 30 minutes. We find no signatures of the supernova ejecta interacting with nearby companions. The lack of observable interaction signatures is consistent with the idea that these three supernovae resulted from the merger of binary white dwarfs or other compact stars such as helium stars.

5.
Nature ; 526(7574): 542-5, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26490619

RESUMO

Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.

6.
Nature ; 513(7516): 74-6, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25132552

RESUMO

M82 X-1, the brightest X-ray source in the galaxy M82, has been thought to be an intermediate-mass black hole (100 to 10,000 solar masses) because of its extremely high luminosity and variability characteristics, although some models suggest that its mass may be only about 20 solar masses. The previous mass estimates were based on scaling relations that use low-frequency characteristic timescales which have large intrinsic uncertainties. For stellar-mass black holes, we know that the high-frequency quasi-periodic oscillations (100-450 hertz) in the X-ray emission that occur in a 3:2 frequency ratio are stable and scale in frequency inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous means of mass determination for intermediate-mass black holes, but has hitherto not been realized. Here we report stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at frequencies of 3.32 ± 0.06 hertz and 5.07 ± 0.06 hertz. Assuming that we can extrapolate the inverse-mass scaling that holds for stellar-mass black holes, we estimate the black hole mass of M82 X-1 to be 428 ± 105 solar masses. In addition, we can estimate the mass using the relativistic precession model, from which we get a value of 415 ± 63 solar masses.

8.
Philos Trans A Math Phys Eng Sci ; 360(1798): 2019-33, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12804244

RESUMO

The constraints on cosmological parameters presently obtained and those that can be obtained from X-ray cluster surveys are presented. Extremely strong bounds on the values of Omega, Lambda, sigma(8) and the power spectrum of fluctuations, as well as constraints on the equation of state of dark energy, can be determined. Recent Advanced Satellite for Cosmology and Astrophysics and XMM results on the chemical composition of clusters show that the Fe abundance is not universal, but is correlated with cluster mass and central gas density. The Si, S and Fe abundances do not resemble those seen in Milky Way Halo stars or those in the Lyman-limit galaxies. The XMM RGS abundances for gas in elliptical galaxies are subsolar and the abundance pattern is not alpha-element rich, in contradiction with all models of elliptical-galaxy gas abundances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA