Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 286(30): 27011-8, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21652698

RESUMO

Botulinum neurotoxin (BoNT) belongs to a large class of toxic proteins that act by enzymatically modifying cytosolic substrates within eukaryotic cells. The process by which a catalytic moiety is transferred across a membrane to enter the cytosol is not understood for any such toxin. BoNT is known to form pH-dependent pores important for the translocation of the catalytic domain into the cytosol. As a first step toward understanding this process, we investigated the mechanism by which the translocation domain of BoNT associates with a model liposome membrane. We report conditions that allow pH-dependent proteoliposome formation and identify a sequence at the translocation domain C terminus that is protected from proteolytic degradation in the context of the proteoliposome. Fluorescence quenching experiments suggest that residues within this sequence move to a hydrophobic environment upon association with liposomes. EPR analyses of spin-labeled mutants reveal major conformational changes in a distinct region of the structure upon association and indicate the formation of an oligomeric membrane-associated intermediate. Together, these data support a model of how BoNT orients with membranes in response to low pH.


Assuntos
Toxinas Botulínicas Tipo A/química , Membranas Artificiais , Modelos Químicos , Multimerização Proteica , Toxinas Botulínicas Tipo A/metabolismo , Citosol/química , Citosol/metabolismo , Concentração de Íons de Hidrogênio , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
2.
Biochemistry ; 49(25): 5200-5, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20507178

RESUMO

Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G(T1b). The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.


Assuntos
Toxinas Botulínicas/metabolismo , Receptores de Superfície Celular/metabolismo , Cristalografia por Raios X , Gangliosídeos/metabolismo , Vetores Genéticos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética
3.
PLoS Pathog ; 4(12): e1000245, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19096517

RESUMO

Clostridium botulinum neurotoxin (BoNT) causes flaccid paralysis by disabling synaptic exocytosis. Intoxication requires the tri-modular protein to undergo conformational changes in response to pH and redox gradients across endosomes, leading to the formation of a protein-conducting channel. The approximately 50 kDa light chain (LC) protease is translocated into the cytosol by the approximately 100 kDa heavy chain (HC), which consists of two modules: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). Here we exploited the BoNT modular design to identify the minimal requirements for channel activity and LC translocation in neurons. Using the combined detection of substrate proteolysis and single-channel currents, we showed that a di-modular protein consisting only of LC and TD was sufficient to translocate active protease into the cytosol of target cells. The RBD is dispensable for cell entry, channel activity, or LC translocation; however, it determined a pH threshold for channel formation. These findings indicate that, in addition to its individual functions, each module acts as a chaperone for the others, working in concert to achieve productive intoxication.


Assuntos
Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Peptídeo Hidrolases/metabolismo , Toxinas Botulínicas Tipo A/química , Células Cultivadas , Sistemas de Liberação de Medicamentos/métodos , Ativação Enzimática , Deleção de Genes , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Canais Iônicos/fisiologia , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Ligação Proteica/genética , Engenharia de Proteínas , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Internalização do Vírus
4.
Proc Natl Acad Sci U S A ; 104(41): 16293-8, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17911250

RESUMO

Helicobacter pylori VacA, a pore-forming toxin secreted by an autotransporter pathway, causes multiple alterations in human cells, contributes to the pathogenesis of peptic ulcer disease and gastric cancer, and is a candidate antigen for inclusion in an H. pylori vaccine. Here, we present a 2.4-A crystal structure of the VacA p55 domain, which has an important role in mediating VacA binding to host cells. The structure is predominantly a right-handed parallel beta-helix, a feature that is characteristic of autotransporter passenger domains but unique among known bacterial protein toxins. Notable features of VacA p55 include disruptions in beta-sheet contacts that result in five beta-helix subdomains and a C-terminal domain that contains a disulfide bond. Analysis of VacA protein sequences from unrelated H. pylori strains, including m1 and m2 forms of VacA, allows us to identify structural features of the VacA surface that may be important for interactions with host receptors. Docking of the p55 structure into a 19-A cryo-EM map of a VacA dodecamer allows us to propose a model for how VacA monomers assemble into oligomeric structures capable of membrane channel formation.


Assuntos
Proteínas de Bactérias/química , Helicobacter pylori/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Genes Bacterianos , Variação Genética , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Humanos , Modelos Moleculares , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA