Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182658

RESUMO

Spatiotemporal parameters of gait serve as an important biomarker to monitor gait impairments as well as to develop rehabilitation systems. In this work, we developed a computationally-efficient algorithm (SDI-Step) that uses segmented double integration to calculate step length and step time from wearable inertial measurement units (IMUs) and assessed its ability to reliably and accurately measure spatiotemporal gait parameters. Two data sets that included simultaneous measurements from wearable sensors and from a laboratory-based system were used in the assessment. The first data set utilized IMU sensors and a GAITRite mat in our laboratory to monitor gait in fifteen participants: 9 young adults (YA1) (5 females, 4 males, age 23.6 ± 1 years), and 6 people with Parkinson's disease (PD) (3 females, 3 males, age 72.3 ± 6.6 years). The second data set, which was accessed from a publicly-available repository, utilized IMU sensors and an optoelectronic system to monitor gait in five young adults (YA2) (2 females, 3 males, age 30.5 ± 3.5 years). In order to provide a complete representation of validity, we used multiple statistical analyses with overlapping metrics. Gait parameters such as step time and step length were calculated and the agreement between the two measurement systems for each gait parameter was assessed using Passing-Bablok (PB) regression analysis and calculation of the Intra-class Correlation Coefficient (ICC (2,1)) with 95% confidence intervals for a single measure, absolute-agreement, 2-way mixed-effects model. In addition, Bland-Altman (BA) plots were used to visually inspect the measurement agreement. The values of the PB regression slope were close to 1 and intercept close to 0 for both step time and step length measures. The results obtained using ICC (2,1) for step length showed a moderate to excellent agreement for YA (between 0.81 and 0.95) and excellent agreement for PD (between 0.93 and 0.98), while both YA and PD had an excellent agreement in step time ICCs (>0.9). Finally, examining the BA plots showed that the measurement difference was within the limits of agreement (LoA) with a 95% probability. Results from this preliminary study indicate that using the SDI-Step algorithm to process signals from wearable IMUs provides measurements that are in close agreement with widely-used laboratory-based systems and can be considered as a valid tool for measuring spatiotemporal gait parameters.


Assuntos
Análise da Marcha/instrumentação , Doença de Parkinson/reabilitação , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Algoritmos , Feminino , Humanos , Masculino , Doença de Parkinson/diagnóstico , Reprodutibilidade dos Testes , Adulto Jovem
2.
Sensors (Basel) ; 19(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835870

RESUMO

Progressive gait dysfunction is one of the primary motor symptoms in people with Parkinson's disease (PD). It is generally expressed as reduced step length and gait speed and as increased variability in step time and step length. People with PD also exhibit stooped posture which disrupts gait and impedes social interaction. The gait and posture impairments are usually resistant to the pharmacological treatment, worsen as the disease progresses, increase the likelihood of falls, and result in higher rates of hospitalization and mortality. These impairments may be caused by perceptual deficiencies (poor spatial awareness and loss of temporal rhythmicity) due to the disruptions in processing intrinsic information related to movement initiation and execution which can result in misperceptions of the actual effort required to perform a desired movement and maintain a stable posture. Consequently, people with PD often depend on external cues during execution of motor tasks. Numerous studies involving open-loop cues have shown improvements in gait and freezing of gait (FoG) in people with PD. However, the benefits of cueing may be limited, since cues are provided in a consistent/rhythmic manner irrespective of how well a person follows them. This limitation can be addressed by providing feedback in real-time to the user about performance (closed-loop cueing) which may help to improve movement patterns. Some studies that used closed-loop cueing observed improvements in gait and posture in PD, but the treadmill-based setup in a laboratory would not be accessible outside of a research setting, and the skills learned may not readily and completely transfer to overground locomotion in the community. Technologies suitable for cueing outside of laboratory environments could facilitate movement practice during daily activities at home or in the community and could strongly reinforce movement patterns and improve clinical outcomes. This narrative review presents an overview of cueing paradigms that have been utilized to improve gait and posture in people with PD and recommends development of closed-loop wearable systems that can be used at home or in the community to improve gait and posture in PD.


Assuntos
Transtornos Neurológicos da Marcha/fisiopatologia , Marcha/fisiologia , Doença de Parkinson/fisiopatologia , Postura/fisiologia , Idoso , Cognição/fisiologia , Transtornos Neurológicos da Marcha/reabilitação , Humanos , Doença de Parkinson/reabilitação
3.
Front Robot AI ; 5: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33500930

RESUMO

In this paper, we present a soft-inflatable exosuit to assist knee extension during gait training for stroke rehabilitation. The soft exosuit is designed to provide 25% of the knee moment required during the swing phase of the gait cycle and is integrated with inertial measurement units (IMUs) and smart shoe insole sensors to improve gait phase detection and controller design. The stiffness of the knee joint during level walking is computed using inverse dynamics. The soft-inflatable actuators, with an I cross-section, are mechanically characterized at varying angles to enable generation of the required stiffness outputs. A linear relation between the inflatable actuator stiffness and internal pressure as a function of the knee angle is obtained, and a two-layer stiffness controller is implemented to assist the knee joint by providing appropriate stiffness during the swing phase. Finally, to evaluate the ability of the exosuit to assist in swing motion, surface-electromyography (sEMG) sensors are placed on the three muscle groups of the quadriceps and two groups of the hamstrings, on three healthy participants. A reduction in muscle activity of the rectus femoris, vastus lateralis, and vastus medialis is observed, which demonstrates feasibility of operation and potential future usage of the soft inflatable exosuit by impaired users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA