Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122511, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39307084

RESUMO

Meteorological droughts often propagate to agricultural (and other) droughts, both spatially and temporally. The present study proposes a novel complex networks-based cascading spatial drought network to examine the spatial propagation of meteorological droughts in a region to agricultural droughts in other regions. This is done through: (1) establishing stable homogeneous drought communities; (2) investigating inter-community drought propagation; (3) locating drought sources; and (4) evaluating drought connections within major crop belts. The approach is implemented to study droughts in the Indian-subcontinent during the period 1948-2022. Monthly precipitation and root-zone soil moisture data from GLDAS (Global Land Data Assimilation System) are used to compute the standardized precipitation index (SPI) for meteorological droughts and standardized soil moisture index (SSI) for agricultural droughts. Primarily, the drought network is demarcated into several subsets of network communities within which clusters of localized propagation take place. Multi-community subgraphs combining different communities are also formed to understand the long-distance inter-community drought linkages. Using network centrality measures, such as degree, closeness, and clustering coefficient, network properties of scale-freeness, small-worldness, and presence of rich-clubs are checked. Although the overall network does not exhibit any of these properties, certain subgraphs have significant small-worldness, rich-clubs, and partial scale-freeness. Some of the crucial nodes that support these network properties lie in the monsoon pathways (in the Western Ghats), and others have a strong association with El Niño Southern Oscillation (ENSO) teleconnections, thus validating the ability of the drought network to capture seasonal and climatic features. Additionally, subgraphs of nodes with high productivity of different food crops are created to study drought propagation within crop belts. Barring potential shortcomings related to data dependencies, the cascading spatial drought network helps identify an impending agricultural drought that could strengthen our ability to forecast droughts.

2.
Sci Total Environ ; 855: 158860, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126712

RESUMO

Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950-2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950-2014), near future (2021-2060), and far future (2061-2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions.


Assuntos
Secas , Zea mays , Mudança Climática , Meteorologia , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA