Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
2.
Radiology ; 310(2): e230793, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319162

RESUMO

Gadolinium-based contrast agents (GBCAs) form the cornerstone of current primary brain tumor MRI protocols at all stages of the patient journey. Though an imperfect measure of tumor grade, GBCAs are repeatedly used for diagnosis and monitoring. In practice, however, radiologists will encounter situations where GBCA injection is not needed or of doubtful benefit. Reducing GBCA administration could improve the patient burden of (repeated) imaging (especially in vulnerable patient groups, such as children), minimize risks of putative side effects, and benefit costs, logistics, and the environmental footprint. On the basis of the current literature, imaging strategies to reduce GBCA exposure for pediatric and adult patients with primary brain tumors will be reviewed. Early postoperative MRI and fixed-interval imaging of gliomas are examples of GBCA exposure with uncertain survival benefits. Half-dose GBCAs for gliomas and T2-weighted imaging alone for meningiomas are among options to reduce GBCA use. While most imaging guidelines recommend using GBCAs at all stages of diagnosis and treatment, non-contrast-enhanced sequences, such as the arterial spin labeling, have shown a great potential. Artificial intelligence methods to generate synthetic postcontrast images from decreased-dose or non-GBCA scans have shown promise to replace GBCA-dependent approaches. This review is focused on pediatric and adult gliomas and meningiomas. Special attention is paid to the quality and real-life applicability of the reviewed literature.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Criança , Meios de Contraste , Gadolínio , Fantasia , Inteligência Artificial , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem
3.
Magn Reson Med ; 91(5): 1743-1760, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37876299

RESUMO

The 2015 consensus statement published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group and the European Cooperation in Science and Technology ( COST) Action ASL in Dementia aimed to encourage the implementation of robust arterial spin labeling (ASL) perfusion MRI for clinical applications and promote consistency across scanner types, sites, and studies. Subsequently, the recommended 3D pseudo-continuous ASL sequence has been implemented by most major MRI manufacturers. However, ASL remains a rapidly and widely developing field, leading inevitably to further divergence of the technique and its associated terminology, which could cause confusion and hamper research reproducibility. On behalf of the ISMRM Perfusion Study Group, and as part of the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI), the ASL Lexicon Task Force has been working on the development of an ASL Lexicon and Reporting Recommendations for perfusion imaging and analysis, aiming to (1) develop standardized, consensus nomenclature and terminology for the broad range of ASL imaging techniques and parameters, as well as for the physiological constants required for quantitative analysis; and (2) provide a community-endorsed recommendation of the imaging parameters that we encourage authors to include when describing ASL methods in scientific reports/papers. In this paper, the sequences and parameters in (pseudo-)continuous ASL, pulsed ASL, velocity-selective ASL, and multi-timepoint ASL for brain perfusion imaging are included. However, the content of the lexicon is not intended to be limited to these techniques, and this paper provides the foundation for a growing online inventory that will be extended by the community as further methods and improvements are developed and established.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagem de Perfusão/métodos , Marcadores de Spin , Circulação Cerebrovascular/fisiologia , Angiografia por Ressonância Magnética/métodos , Perfusão
4.
Magn Reson Med ; 91(5): 1787-1802, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37811778

RESUMO

PURPOSE: To create an inventory of image processing pipelines of arterial spin labeling (ASL) and list their main features, and to evaluate the capability, flexibility, and ease of use of publicly available pipelines to guide novice ASL users in selecting their optimal pipeline. METHODS: Developers self-assessed their pipelines using a questionnaire developed by the Task Force 1.1 of the ISMRM Open Science Initiative for Perfusion Imaging. Additionally, each publicly available pipeline was evaluated by two independent testers with basic ASL experience using a scoring system created for this purpose. RESULTS: The developers of 21 pipelines filled the questionnaire. Most pipelines are free for noncommercial use (n = 18) and work with the standard NIfTI (Neuroimaging Informatics Technology Initiative) data format (n = 15). All pipelines can process standard 3D single postlabeling delay pseudo-continuous ASL images and primarily differ in their support of advanced sequences and features. The publicly available pipelines (n = 9) were included in the independent testing, all of them being free for noncommercial use. The pipelines, in general, provided a trade-off between ease of use and flexibility for configuring advanced processing options. CONCLUSION: Although most ASL pipelines can process the common ASL data types, only some (namely, ASLPrep, ASLtbx, BASIL/Quantiphyse, ExploreASL, and MRICloud) are well-documented, publicly available, support multiple ASL types, have a user-friendly interface, and can provide a useful starting point for ASL processing. The choice of an optimal pipeline should be driven by specific data to be processed and user experience, and can be guided by the information provided in this ASL inventory.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Marcadores de Spin , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Artérias , Imagem de Perfusão , Circulação Cerebrovascular , Imageamento por Ressonância Magnética/métodos , Perfusão
5.
Magn Reson Med ; 92(2): 836-852, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38502108

RESUMO

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.


Assuntos
Encéfalo , Circulação Cerebrovascular , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Marcadores de Spin , Humanos , Circulação Cerebrovascular/fisiologia , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Masculino , Feminino , Adulto , Algoritmos
6.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594906

RESUMO

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Assuntos
Encéfalo , Circulação Cerebrovascular , Marcadores de Spin , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão
7.
NMR Biomed ; 37(6): e5124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403798

RESUMO

Advanced intraoperative MR images (ioMRI) acquired during the resection of pediatric brain tumors could offer additional physiological information to preserve healthy tissue. With this work, we aimed to develop a protocol for ioMRI with increased sensitivity for arterial spin labeling (ASL) and diffusion MRI (dMRI), optimized for patient positioning regularly used in the pediatric neurosurgery setting. For ethical reasons, ASL images were acquired in healthy adult subjects that were imaged in the prone and supine position. After this, the ASL cerebral blood flow (CBF) was quantified and compared between both positions. To evaluate the impact of the RF coils setups on image quality, we compared different setups (two vs. four RF coils) by looking at T1-weighted (T1w) signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), as well as undertaking a qualitative evaluation of T1w, T2w, ASL, and dMR images. Mean ASL CBF did not differ between the surgical prone and supine positions in any of the investigated regions of interest or the whole brain. T1w SNR (gray matter: p = 0.016, 34% increase; white matter: p = 0.016, 32% increase) and CNR were higher (p = 0.016) in the four versus two RF coils setups (18.0 ± 1.8 vs. 13.9 ± 1.8). Qualitative evaluation of T1w, T2w, ASL, and dMR images resulted in acceptable to good image quality and did not differ statistically significantly between setups. Only the nonweighted diffusion image maps and corticospinal tract reconstructions yielded higher image quality and reduced susceptibility artifacts with four RF coils. Advanced ioMRI metrics were more precise with four RF coils as the standard deviation decreased. Taken together, we have investigated the practical use of advanced ioMRI during pediatric neurosurgery. We conclude that ASL CBF quantification in the surgical prone position is valid and that ASL and dMRI acquisition with two RF coils can be performed adequately for clinical use. With four versus two RF coils, the SNR of the images increases, and the sensitivity to artifacts reduces.


Assuntos
Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos , Razão Sinal-Ruído , Humanos , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Criança , Adulto , Circulação Cerebrovascular/fisiologia , Marcadores de Spin , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia
8.
J Magn Reson Imaging ; 59(5): 1667-1680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37801027

RESUMO

BACKGROUND: Exercise is a promising intervention to alleviate cognitive problems in breast cancer patients, but studies on mechanisms underlying these effects are lacking. PURPOSE: Investigating whether an exercise intervention can affect cerebral blood flow (CBF) in cognitively impaired breast cancer patients and to determine if CBF changes relate to memory function. STUDY TYPE: Prospective. POPULATION: A total of 181 chemotherapy-treated stage I-III breast cancer patients with cognitive problems and relatively low physical activity levels (≤150 minutes moderate to vigorous physical activity per week), divided into an exercise (N = 91) or control group (N = 90). FIELD STRENGTH/SEQUENCE: Two-dimensional echo planar pseudo-continuous arterial spin labeling CBF sequence at 3 T. ASSESSMENT: The 6-month long intervention consisted of (supervised) aerobic and strength training, 4 × 1 hour/week. Measurements at baseline (2-4 years post-diagnosis) and after 6 months included gray matter CBF in the whole brain, hippocampus, anterior cingulate cortex, and posterior cingulate cortex. Physical fitness and memory function were also assessed. Subgroup analyses were performed in patients with high fatigue levels at baseline. STATISTICAL TESTS: Multiple regression analyses with a two-sided alpha of 0.05 for all analyses. RESULTS: There was a significant improvement in physical fitness (VO2peak in mL/minute/kg) in the intervention group (N = 53) compared to controls (N = 51, ß = 1.47 mL/minute/kg, 95% CI: 0.44-2.50). However, no intervention effects on CBF were found (eg, whole brain: P = 0.565). Highly fatigued patients showed larger but insignificant treatment effects on CBF (eg, whole brain: P = 0.098). Additionally, irrespective of group, a change in physical fitness was positively associated with changes in CBF (eg, whole brain: ß = 0.75, 95% CI: 0.07-1.43). There was no significant relation between CBF changes and changes in memory performance. DATA CONCLUSION: The exercise intervention did not affect CBF of cognitively affected breast cancer patients. A change in physical fitness was associated with changes in CBF, but changes in CBF were not associated with memory functioning. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 5.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Estudos Prospectivos , Exercício Físico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Perfusão , Circulação Cerebrovascular
9.
Neuroradiology ; 66(1): 31-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047983

RESUMO

PURPOSE: Artifacts in magnetic resonance imaging (MRI) scans degrade image quality and thus negatively affect the outcome measures of clinical and research scanning. Considering the time-consuming and subjective nature of visual quality control (QC), multiple (semi-)automatic QC algorithms have been developed. This systematic review presents an overview of the available (semi-)automatic QC algorithms and software packages designed for raw, structural T1-weighted (T1w) MRI datasets. The objective of this review was to identify the differences among these algorithms in terms of their features of interest, performance, and benchmarks. METHODS: We queried PubMed, EMBASE (Ovid), and Web of Science databases on the fifth of January 2023, and cross-checked reference lists of retrieved papers. Bias assessment was performed using PROBAST (Prediction model Risk Of Bias ASsessment Tool). RESULTS: A total of 18 distinct algorithms were identified, demonstrating significant variations in methods, features, datasets, and benchmarks. The algorithms were categorized into rule-based, classical machine learning-based, and deep learning-based approaches. Numerous unique features were defined, which can be roughly divided into features capturing entropy, contrast, and normative measures. CONCLUSION: Due to dataset-specific optimization, it is challenging to draw broad conclusions about comparative performance. Additionally, large variations exist in the used datasets and benchmarks, further hindering direct algorithm comparison. The findings emphasize the need for standardization and comparative studies for advancing QC in MR imaging. Efforts should focus on identifying a dataset-independent measure as well as algorithm-independent methods for assessing the relative performance of different approaches.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Algoritmos , Controle de Qualidade
10.
Hum Brain Mapp ; 44(7): 2754-2766, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36852443

RESUMO

Current structural MRI-based brain age estimates and their difference from chronological age-the brain age gap (BAG)-are limited to late-stage pathological brain-tissue changes. The addition of physiological MRI features may detect early-stage pathological brain alterations and improve brain age prediction. This study investigated the optimal combination of structural and physiological arterial spin labelling (ASL) image features and algorithms. Healthy participants (n = 341, age 59.7 ± 14.8 years) were scanned at baseline and after 1.7 ± 0.5 years follow-up (n = 248, mean age 62.4 ± 13.3 years). From 3 T MRI, structural (T1w and FLAIR) volumetric ROI and physiological (ASL) cerebral blood flow (CBF) and spatial coefficient of variation ROI features were constructed. Multiple combinations of features and machine learning algorithms were evaluated using the Mean Absolute Error (MAE). From the best model, longitudinal BAG repeatability and feature importance were assessed. The ElasticNetCV algorithm using T1w + FLAIR+ASL performed best (MAE = 5.0 ± 0.3 years), and better compared with using T1w + FLAIR (MAE = 6.0 ± 0.4 years, p < .01). The three most important features were, in descending order, GM CBF, GM/ICV, and WM CBF. Average baseline and follow-up BAGs were similar (-1.5 ± 6.3 and - 1.1 ± 6.4 years respectively, ICC = 0.85, 95% CI: 0.8-0.9, p = .16). The addition of ASL features to structural brain age, combined with the ElasticNetCV algorithm, improved brain age prediction the most, and performed best in a cross-sectional and repeatability comparison. These findings encourage future studies to explore the value of ASL in brain age in various pathologies.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Estudos Transversais , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Perfusão , Marcadores de Spin
11.
Magn Reson Med ; 89(5): 2024-2047, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36695294

RESUMO

This article focuses on clinical applications of arterial spin labeling (ASL) and is part of a wider effort from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group to update and expand on the recommendations provided in the 2015 ASL consensus paper. Although the 2015 consensus paper provided general guidelines for clinical applications of ASL MRI, there was a lack of guidance on disease-specific parameters. Since that time, the clinical availability and clinical demand for ASL MRI has increased. This position paper provides guidance on using ASL in specific clinical scenarios, including acute ischemic stroke and steno-occlusive disease, arteriovenous malformations and fistulas, brain tumors, neurodegenerative disease, seizures/epilepsy, and pediatric neuroradiology applications, focusing on disease-specific considerations for sequence optimization and interpretation. We present several neuroradiological applications in which ASL provides unique information essential for making the diagnosis. This guidance is intended for anyone interested in using ASL in a routine clinical setting (i.e., on a single-subject basis rather than in cohort studies) building on the previous ASL consensus review.


Assuntos
AVC Isquêmico , Doenças Neurodegenerativas , Humanos , Criança , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Marcadores de Spin , Perfusão , Circulação Cerebrovascular
12.
NMR Biomed ; 36(3): e4846, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259628

RESUMO

Magnetic resonance imaging (MRI) technology has profoundly transformed current healthcare systems globally, owing to advances in hardware and software research innovations. Despite these advances, MRI remains largely inaccessible to clinicians, patients, and researchers in low-resource areas, such as Africa. The rapidly growing burden of noncommunicable diseases in Africa underscores the importance of improving access to MRI equipment as well as training and research opportunities on the continent. The Consortium for Advancement of MRI Education and Research in Africa (CAMERA) is a network of African biomedical imaging experts and global partners, implementing novel strategies to advance MRI access and research in Africa. Upon its inception in 2019, CAMERA sets out to identify challenges to MRI usage and provide a framework for addressing MRI needs in the region. To this end, CAMERA conducted a needs assessment survey (NAS) and a series of symposia at international MRI society meetings over a 2-year period. The 68-question NAS was distributed to MRI users in Africa and was completed by 157 clinicians and scientists from across Sub-Saharan Africa (SSA). On average, the number of MRI scanners per million people remained at less than one, of which 39% were obsolete low-field systems but still in use to meet daily clinical needs. The feasibility of coupling stable energy supplies from various sources has contributed to the growing number of higher-field (1.5 T) MRI scanners in the region. However, these systems are underutilized, with only 8% of facilities reporting clinical scans of 15 or more patients per day, per scanner. The most frequently reported MRI scans were neurological and musculoskeletal. The CAMERA NAS combined with the World Health Organization and International Atomic Energy Agency data provides the most up-to-date data on MRI density in Africa and offers a unique insight into Africa's MRI needs. Reported gaps in training, maintenance, and research capacity indicate ongoing challenges in providing sustainable high-value MRI access in SSA. Findings from the NAS and focused discussions at international MRI society meetings provided the basis for the framework presented here for advancing MRI capacity in SSA. While these findings pertain to SSA, the framework provides a model for advancing imaging needs in other low-resource settings.


Assuntos
Imageamento por Ressonância Magnética , Humanos , África Subsaariana , Inquéritos e Questionários
13.
J Magn Reson Imaging ; 57(1): 206-215, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35633282

RESUMO

BACKGROUND: Amide proton transfer (APT) imaging is a chemical exchange saturation transfer (CEST) technique offering potential clinical applications such as diagnosis, characterization, and treatment planning and monitoring in glioma patients. While APT-CEST has demonstrated high potential, reproducibility remains underexplored. PURPOSE: To investigate whether cerebral APT-CEST with clinically feasible scan time is reproducible in healthy tissue and glioma for clinical use at 3 T. STUDY TYPE: Prospective, longitudinal. SUBJECTS: Twenty-one healthy volunteers (11 females; mean age ± SD: 39 ± 11 years) and 6 glioma patients (3 females; 50 ± 17 years: 4 glioblastomas, 1 oligodendroglioma, 1 radiologically suspected low-grade glioma). FIELD STRENGTH/SEQUENCE: 3 T, Turbo Spin Echo - ampling perfection with application optimized contrasts using different flip angle evolution - chemical exchange saturation transfer (TSE SPACE-CEST). ASSESSMENT: APT-CEST measurement reproducibility was assessed within-session (glioma patients, scan session 1; healthy volunteers scan sessions 1, 2, and 3), between-sessions (healthy volunteers scan sessions 1 and 2), and between-days (healthy volunteers, scan sessions 1 and 3). The mean APTCEST values and standard deviation of the within-subject difference (SDdiff ) were calculated in whole tumor enclosed by regions of interest (ROIs) in patients, and eight ROIs in healthy volunteers-whole-brain, cortical gray matter, putamen, thalami, orbitofrontal gyri, occipital lobes, central brain-and compared. STATISTICAL TESTS: Brown-Forsythe tests and variance component analysis (VCA) were used to assess the reproducibility of ROIs for the three time intervals. Significance was set at P < 0.003 after Bonferroni correction. RESULTS: Intratumoral mean APTCEST was significantly higher than APTCEST in healthy-appearing tissue in patients (0.5 ± 0.46%). The average within-session, between-sessions, and between-days SDdiff of healthy control brains was 0.2% and did not differ significantly with each other (0.76 > P > 0.22). The within-session SDdiff of whole-brain was 0.2% in both healthy volunteers and patients, and 0.21% in the segmented tumor. VCA showed that within-session factors were the most important (60%) for scanning variance. DATA CONCLUSION: Cerebral APT-CEST imaging may show good scan-rescan reproducibility in healthy tissue and tumors with clinically feasible scan times at 3 T. Short-term measurement effects may be the dominant components for reproducibility. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioma , Feminino , Humanos , Prótons , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Amidas , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Estudos Prospectivos , Glioma/diagnóstico por imagem , Glioma/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Voluntários Saudáveis
14.
Magn Reson Med ; 88(5): 2021-2042, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35983963

RESUMO

This review article provides an overview of a range of recent technical developments in advanced arterial spin labeling (ASL) methods that have been developed or adopted by the community since the publication of a previous ASL consensus paper by Alsop et al. It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine Perfusion Study Group. Here, we focus on advancements in readouts and trajectories, image reconstruction, noise reduction, partial volume correction, quantification of nonperfusion parameters, fMRI, fingerprinting, vessel selective ASL, angiography, deep learning, and ultrahigh field ASL. We aim to provide a high level of understanding of these new approaches and some guidance for their implementation, with the goal of facilitating the adoption of such advances by research groups and by MRI vendors. Topics outside the scope of this article that are reviewed at length in separate articles include velocity selective ASL, multiple-timepoint ASL, body ASL, and clinical ASL recommendations.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Circulação Cerebrovascular , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Marcadores de Spin
15.
Haematologica ; 107(11): 2708-2719, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35548868

RESUMO

Silent cerebral infarcts (SCI) are common in patients with sickle cell disease (SCD) and are thought to be caused by a mismatch between oxygen delivery and consumption. Functional cerebrovascular shunting is defined as reduced oxygen offloading due to the rapid transit of blood through the capillaries caused by increased flow and has been suggested as a potential mechanism underlying reduced oxygenation and SCI. We investigated the venous arterial spin labeling signal (VS) in the sagittal sinus as a proxy biomarker of cerebral functional shunting, and its association with hemodynamic imaging and hematological laboratory parameters. We included 28 children and 38 adults with SCD, and ten healthy racematched adult controls. VS, cerebral blood flow (CBF), velocity in the brain feeding arteries, oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2) were measured before and after acetazolamide administration. VS was higher in patients with SCD compared to controls (P<0.01) and was increased after acetazolamide administration in all groups (P<0.01). VS was primarily predicted by CBF (P<0.01), but CBF-corrected VS was also associated with decreased CMRO2 (P<0.01). Additionally, higher disease severity defined by low hemoglobin and increased hemolysis was associated with higher CBF-corrected VS. Finally, CMRO2 was negatively correlated with fetal hemoglobin, and positively correlated with lactate dehydrogenase, which could be explained by changes in oxygen affinity. These findings provide evidence for cerebral functional shunting and encourage future studies investigating the potential link to aberrant capillary exchange in SCD.


Assuntos
Anemia Falciforme , Imageamento por Ressonância Magnética , Adulto , Criança , Humanos , Imageamento por Ressonância Magnética/métodos , Acetazolamida , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Oxigênio/metabolismo , Infarto Cerebral , Consumo de Oxigênio/fisiologia
16.
Am J Geriatr Psychiatry ; 30(12): 1298-1309, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871110

RESUMO

BACKGROUND: Cognitive decline in older adults has been attributed to reduced cerebral blood flow (CBF). Recently, the spatial coefficient of variation (sCoV) of ASL has been proposed as a proxy marker of cerebrovascular insufficiency. We investigated the association between baseline ASL parameters with cognitive decline, incident cerebrovascular disease, and risk of vascular events and mortality. DESIGN, SETTING, AND PARTICIPANTS: About 368 memory-clinic patients underwent three-annual neuropsychological assessments and brain MRI scans at baseline and follow-up. MRIs were graded for white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMBs), cortical infarcts, and intracranial stenosis. Baseline gray (GM) and white matter (WM) CBF and GM-sCoV were obtained with ExploreASL from 2D-EPI pseudo-continuous ASL images. Cognitive assessment was done using a validated neuropsychological battery. Data on incident vascular events (heart disease, stroke, transient ischemic attack) and mortality were obtained. RESULTS: Higher baseline GM-sCoV was associated with decline in the memory domain over 3 years of follow-up. Furthermore, higher GM-sCoV was associated with a decline in the memory domain only in participants without dementia. Higher baseline GM-sCoV was associated with progression of WMH and incident CMBs. During a mean follow-up of 3 years, 29 (7.8%) participants developed vascular events and 18 (4.8%) died. Participants with higher baseline mean GM-sCoV were at increased risk of vascular events. CONCLUSIONS: Higher baseline GM-sCoV of ASL was associated with a decline in memory and risk of cerebrovascular disease and vascular events, suggesting that cerebrovascular insufficiency may contribute to accelerated cognitive decline and worse clinical outcomes in memory clinic participants.


Assuntos
Circulação Cerebrovascular , Disfunção Cognitiva , Humanos , Idoso , Marcadores de Spin , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo
17.
MAGMA ; 35(1): 163-186, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34919195

RESUMO

Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.


Assuntos
Transtornos Cognitivos , Neoplasias , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
18.
Hum Brain Mapp ; 42(7): 1945-1951, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33522661

RESUMO

Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere.


Assuntos
Encéfalo/diagnóstico por imagem , Disseminação de Informação , Consentimento Livre e Esclarecido , Neuroimagem , Sujeitos da Pesquisa , Humanos , Disseminação de Informação/ética , Consentimento Livre e Esclarecido/ética , Neuroimagem/ética
19.
Neuroimage ; 219: 117031, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526385

RESUMO

Arterial spin labeling (ASL) has undergone significant development since its inception, with a focus on improving standardization and reproducibility of its acquisition and quantification. In a community-wide effort towards robust and reproducible clinical ASL image processing, we developed the software package ExploreASL, allowing standardized analyses across centers and scanners. The procedures used in ExploreASL capitalize on published image processing advancements and address the challenges of multi-center datasets with scanner-specific processing and artifact reduction to limit patient exclusion. ExploreASL is self-contained, written in MATLAB and based on Statistical Parameter Mapping (SPM) and runs on multiple operating systems. To facilitate collaboration and data-exchange, the toolbox follows several standards and recommendations for data structure, provenance, and best analysis practice. ExploreASL was iteratively refined and tested in the analysis of >10,000 ASL scans using different pulse-sequences in a variety of clinical populations, resulting in four processing modules: Import, Structural, ASL, and Population that perform tasks, respectively, for data curation, structural and ASL image processing and quality control, and finally preparing the results for statistical analyses on both single-subject and group level. We illustrate ExploreASL processing results from three cohorts: perinatally HIV-infected children, healthy adults, and elderly at risk for neurodegenerative disease. We show the reproducibility for each cohort when processed at different centers with different operating systems and MATLAB versions, and its effects on the quantification of gray matter cerebral blood flow. ExploreASL facilitates the standardization of image processing and quality control, allowing the pooling of cohorts which may increase statistical power and discover between-group perfusion differences. Ultimately, this workflow may advance ASL for wider adoption in clinical studies, trials, and practice.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Algoritmos , Circulação Cerebrovascular/fisiologia , Humanos , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Software , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA