RESUMO
Approximate Bayesian computation (ABC) is a powerful and widely used approach in inference of population history. However, the computational effort required to discriminate among alternative historical scenarios often limits the set that is compared to those considered more likely a priori. While often justifiable, this approach will fail to consider unexpected but well-supported population histories. We used a hierarchical tournament approach, in which subsets of scenarios are compared in a first round of ABC analyses and the winners are compared in a second analysis, to reconstruct the population history of an oak gall wasp, Synergus umbraculus (Hymenoptera, Cynipidae) across the Western Palaearctic. We used 4,233 bp of sequence data across seven loci to explore the relationships between four putative Pleistocene refuge populations in Iberia, Italy, the Balkans and Western Asia. We compared support for 148 alternative scenarios in eight pools, each pool comprising all possible rearrangements of four populations over a given topology of relationships, with or without founding of one population by admixture and with or without an unsampled "ghost" population. We found very little support for the directional "out of the east" scenario previously inferred for other gall wasp community members. Instead, the best-supported models identified Iberia as the first-regional population to diverge from the others in the late Pleistocene, followed by divergence between the Balkans and Western Asia, and founding of the Italian population through late Pleistocene admixture from Iberia and the Balkans. We compare these results with what is known for other members of the oak gall community, and consider the strengths and weaknesses of using a tournament approach to explore phylogeographic model space.
Assuntos
Teorema de Bayes , Genética Populacional , Modelos Genéticos , Vespas/genética , Animais , Ásia , Europa (Continente) , Marcadores Genéticos , Variação Genética , Oriente Médio , Taxa de Mutação , Filogenia , Filogeografia , Quercus , Refúgio de Vida SelvagemRESUMO
Four new species of oak gallwasps, Andricus ahmeti, A. anatolicus, A. bakrachus and A. turcicus (Hymenoptera: Cynipidae: Cynipini) are described from Turkey. All four species are known only from asexual females and induce galls on twigs and young shoots on Q. infectoria, Q. macranthera and Q. petraea. Data on the diagnosis, distribution and biology of the four new species are given. Andricus stonei and Aphelonyx kordestanica are listed for the first time for the Turkish oak gallwasp fauna.
Assuntos
Himenópteros/anatomia & histologia , Himenópteros/classificação , Animais , Demografia , Feminino , Himenópteros/genética , Himenópteros/fisiologia , Larva , Filogenia , Quercus/parasitologia , Especificidade da Espécie , TurquiaRESUMO
In recent years, the oak lace bug, Corythucha arcuata, has emerged as a significant threat to European oak forests. This species, native to North America, has in the last two decades rapidly extended its range in Europe, raising concerns about its potential impact on the continent's invaluable oak populations. To address this growing concern, we conducted an extensive study to assess the distribution, colonization patterns, and potential ecological niche of the oak lace bug in Europe. We gathered 1792 unique presence coordinates from 21 Eurasian countries, utilizing diverse sources such as research observations, citizen science initiatives, GBIF database, and social media reports. To delineate the realized niche and future distribution, we employed an ensemble species distribution modelling (SDM) framework. Two future greenhouse gas scenarios (RCP 4.5 and RCP 8.5) were considered across three-time intervals (2021-2040, 2061-2080, and 2081-2100) to project and evaluate the species' potential distribution in the future. Our analysis revealed that significant hotspots rich in host species occurrence for this invasive insect remain uninvaded so far, even within its suitable habitat. Furthermore, the native ranges of Turkey oak (Quercus cerris L.) and Hungarian oak (Quercus frainetto L.) species offer entirely suitable environments for the oak lace bug. In contrast, the pedunculate oak and sessile oak distribution ranges currently show only 40 % and 50 % suitability for colonization, respectively. However, our predictive models indicate a significant transformation in the habitat suitability of the oak lace bug, with suitability for these two oak species increasing by up to 90 %. This shift underlines an evolving landscape where the oak lace bug may exploit more of its available habitats than initially expected. It emphasises the pressing need for proactive measures to manage and stop its expanding presence, which may lead to a harmful impact on the oak population across the European landscape.
Assuntos
Mudança Climática , Espécies Introduzidas , Quercus , Europa (Continente) , Animais , Ecossistema , Heterópteros , Distribuição AnimalRESUMO
Mitochondrial DNA barcodes provide a simple taxonomic tool for systematic and ecological research, with particular benefit for poorly studied or species-rich taxa. Barcoding assumes genetic diversity follows species boundaries; however, many processes disrupt species-level monophyly of barcodes leading to incorrect classifications. Spatial population structure, particularly when shared across closely related and potentially hybridizing taxa, can invalidate barcoding approaches yet few data exist to examine its impacts. We test how shared population structure across hybridizing species impacts upon mitochondrial barcodes by sequencing the cytochrome b gene for 518 individuals of four well-delimited Western Palaearctic gallwasp species within the Andricus quercuscalicis species group. Mitochondrial barcodes clustered individuals into mixed-species clades corresponding to refugia, with no difference in within- and between-species divergence. Four nuclear genes were also sequenced from 4 to 11 individuals per refugial population of each species. Multi-locus analyses of these data supported established species, with no support for the refugial clustering across species seen in mitochondrial barcodes. This pattern is consistent with mitochondrial introgression among populations of species sharing the same glacial refugium, such that mitochondrial barcodes identify a shared history of population structure rather than species. Many taxa show phylogeographic structure across glacial refugia, suggesting that mitochondrial barcoding may fail when applied to other sets of co-distributed, closely related species. Robust barcoding approaches must sample extensively across population structure to disentangle spatial from species-level variation. Methods incorporating multiple unlinked loci are also essential to accommodate coalescent variation among genes and provide power to resolve recently diverged species.
Assuntos
DNA Mitocondrial/genética , Genética Populacional , Hibridização Genética , Vespas/genética , Animais , Núcleo Celular/genética , Variação Genética , Mitocôndrias/genética , Dados de Sequência Molecular , Filogeografia , Vespas/classificaçãoRESUMO
BACKGROUND: Tabanus bromius (Diptera: Tabanidae) is one of the most notable Tabanidae species of veterinary and medical importance distributed throughout the Palearctic region. In this study, we investigate the genetic diversity and the phylogeographic structure of T. bromius sampled from Turkey, Croatia, and Iran. METHODS: For this purpose, a 686-base-pair (bp) fragment of mitochondrial DNA cytochrome oxidase I gene (COI) and 1339 bp of the nuclear DNA internal transcribed spacer (ITS) were sequenced from 247 individuals representing 15 populations. RESULTS: The sequences generated 169 COI haplotypes and 90 ITS alleles. A higher haplotype/allele diversity (h = 0.9909 for the COI gene and Ad = 0.8193 for the ITS region) compared to a low nucleotide diversity (π = 0.020605 for COI gene and π = 0.013667 for the ITS region), present for a high number of singleton and private haplotypes/alleles imply population expansion in the past. The results of phylogenetic analysis led to the uncovering of geographically significant groupings of lineages with regard to the entrance of the species into Anatolia and the location of major geographic barriers. According to current data, the species appears to have entered Turkey from Caucasia and Iran. A molecular clock applied to the COI data suggests that T. bromius diverged from the outgroup species nearly 8.83 million years ago, around the end of the Miocene era. CONCLUSIONS: The results of this study indicate remarkable genetic diversity across the studied range of the species. High haplotype/allele versus low nucleotide diversity and demographic analyses implied that the T. bromius populations have undergone a series of expansions and retreats in the past. Our current findings suggest that T. bromius split from outgroups around the Late Miocene. Subsequent diversification events during the climatic and environmental fluctuation times of the Late Pliocene and Early Pleistocene periods also significantly influenced the species, resulting in the formation of some major genetic lineages. The phylogenetic analyses indicate that T. bromius most likely entered Turkey from the Caucasus region and Iran.
Assuntos
Dípteros/classificação , Dípteros/genética , Genética Populacional , Filogenia , Animais , DNA Mitocondrial/genética , Dípteros/fisiologia , Feminino , Genes Mitocondriais , Variação Genética , Filogeografia , Análise de Sequência de DNARESUMO
Two new species of oak gall wasps, Cynips izzetbaysali sp. nov. and Callirhytis afion sp. nov. (Hymenoptera: Cynipidae: Cynipini) are described from Turkey. The new Cynips species is known only from asexual females and induces detachable leaf galls on Quercus infectoria. The sexual generation of the new Callirhytis species is known to induce acorn galls on Quercus cerris. Data on the diagnosis, distribution, and biology of the two new species are given.
Assuntos
Himenópteros , Quercus , Vespas , Animais , Feminino , Folhas de Planta , TurquiaRESUMO
The oak gallwasp Andricus coriarius is distributed across the Western Palaearctic from Morocco to Iran. It belongs to a clade of host-alternating Andricus species that requires host oaks in two sections of Quercus subgenus Quercus to complete its lifecycle, a requirement that has restricted the historic distribution and dispersal of members of this clade. Here we present nuclear and mitochondrial sequence evidence from the entire geographic range of A. coriarius to investigate the genetic legacy of longitudinal range expansion. We show A. coriarius as currently understood to be para- or polyphyletic, with three evolutionarily independent (but partially sympatric) lineages that diverged c. 10 million years ago (mya). The similarities in gall structure that have justified recognition of single species to date thus represent either strong conservation of an ancestral state or striking convergence. All three lineages originated in areas to the east of Europe, underlining the significance of Turkey, Iran and the Levant as 'cradles' of gallwasp evolution. One of the three lineages gave rise to all European populations, and range expansion from a putative Eastern origin to the present distribution is predicted to have occurred around 1.6 mya.
Assuntos
Demografia , Filogenia , Quercus/parasitologia , Vespas/genética , Animais , Sequência de Bases , Teorema de Bayes , Primers do DNA , DNA Mitocondrial/genética , Europa (Continente) , Geografia , Haplótipos/genética , Interações Hospedeiro-Parasita , Oriente Médio , Modelos Genéticos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Vespas/classificaçãoRESUMO
Human dispersal of organisms is an important process modifying natural patterns of biodiversity. Such dispersal generates new patterns of genetic diversity that overlie natural phylogeographical signatures, allowing discrimination between alternative dispersal mechanisms. Here we use allele frequency and DNA sequence data to distinguish between alternative scenarios (unassisted range expansion and long range introduction) for the colonization of northern Europe by an oak-feeding gallwasp, Andricus kollari. Native to Mediterranean latitudes from Portugal to Iran, this species became established in northern Europe following human introduction of a host plant, the Turkey oak Quercus cerris. Colonization of northern Europe is possible through three alternative routes: (i) unassisted range expansion from natural populations in the Iberian Peninsula; (ii) unassisted range expansion from natural populations in Italy and Hungary; or (iii) descent from populations imported to the UK as trade goods from the eastern Mediterranean in the 1830s. We show that while populations in France were colonized from sources in Italy and Hungary, populations in the UK and neighbouring parts of coastal northern Europe encompass allozyme and sequence variation absent from the known native range. Further, these populations show demographic signatures expected for large stable populations, rather than signatures of rapid population growth from small numbers of founders. The extent and spatial distribution of genetic diversity in the UK suggests that these A. kollari populations are derived from introductions of large numbers of individuals from each of two genetically divergent centres of diversity in the eastern Mediterranean. The strong spatial patterning in genetic diversity observed between different regions of northern Europe, and between sites in the UK, is compatible with leptokurtic models of population establishment.