Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174489, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986689

RESUMO

This paper investigates the feasibility of using randomly collected fruit and vegetable (FV) waste as a cheap growing medium of bacteria for biocementation applications. Biocementation has been proposed in the literature as an environmentally-friendly ground improvement method to increase the stability of geomaterials, prevent erosion and encapsulate waste, but currently suffers from the high costs involved, such as bacteria cultivation costs. After analysis of FV waste of varied composition in terms of sugar and protein content, diluted FV waste was used to grow ureolytic (S. pasteurii, and B.licheniformis) and also an autochthonous heterotrophic carbonic anhydase (CA)-producing B.licheniformis strain, whose growth in FV media had not been attempted before. Bacterial growth and enzymatic activity in FV were of appropriate levels, although reduced compared to commercial media. Namely, the CA-producing B.licheniformis had a maximum OD600 of 1.799 and a CA activity of 0.817 U/mL in FV media. For the ureolytic pathway, B. licheniformis reached a maximum OD600 of 0.986 and a maximum urease activity of 0.675 mM urea/min, and S. pasteurii a maximum OD600 = 0.999 and a maximum urease activity of 0.756 mM urea/min. Biocementation of a clay and locomotive ash, a geomaterial specific to UK railway embankments, using precultured bacteria in FV was then proven, based on recorded unconfined compressive strengths of 1-3 MPa and calcite content increases of up to 4.02 and 8.62 % for the clay and ash respectively. Scanning Electron Microscope (SEM) and energy dispersive X-ray spectroscopy (EDS), attested the formation of bioprecipitates with characteristic morphologies and elementary composition of calcite crystals. These findings suggest the potential of employing FV to biocement these problematic geomaterials and are of wider relevance for environmental and geoenvironmental applications involving bioaugmentation. Such applications that require substrates in very large quantities can help tackle the management of the very voluminous fruit and vegetable waste produced worldwide.


Assuntos
Frutas , Verduras , Carbonato de Cálcio/química , Bacillus/metabolismo , Sporosarcina/metabolismo
2.
Environ Sci Pollut Res Int ; 31(33): 45818-45833, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976195

RESUMO

We study the carbonic anhydrase (CA) pathway using autochthonous CA-producing bacteria as a means of inducing calcite precipitation, which acts as a biocement to improve the engineering soil properties. Forty different microbial strains producing CA were isolated from the foundation soil of a railway embankment in Prickwillow, UK. Three of the best CA-producing strains were selected and identified by DNA sequencing as Bacillus licheniformis, Bacillus toyonensis and Bacillus pumilus with CA activity values respectively of 1.79 U/ml, 1.42 U/ml and 1.55 U/ml. To optimise the treatments, we investigated the effect of pH, temperature, zinc co-factor and cementation solution molarity on the growth and CA activity and bioprecipitates, with CO2 added in the form of bicarbonate. Scanning electron microscope (SEM) analysis of the bioprecipitates showed that these had characteristic morphologies of calcite and vaterite crystals. The formation of calcite was further corroborated by FT-IR and Raman analysis of bioprecipitates. The precultured bacteria were injected into the fine-grained soil together with cementation solution. Unconfined compressive strength in treated soil increased up to 1 MPa, and its calcium carbonate content increased by 2.78%. This, as well as the stability of the treated soil upon water immersion, proved the biocementation of the fine-grained soil. These findings suggest the potential of employing the CA biocementation route for soil stabilisation pending further development of the technique.


Assuntos
Carbonato de Cálcio , Anidrases Carbônicas , Solo , Carbonato de Cálcio/química , Anidrases Carbônicas/metabolismo , Solo/química , Microbiologia do Solo , Bactérias/enzimologia
3.
Environ Sci Pollut Res Int ; 30(47): 104916-104931, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37702861

RESUMO

This study investigates the feasibility of biocementing clay soil underneath a railway embankment of the UK rail network via carbonic anhydrase (CA) biocementation, implementing the treatments electrokinetically. Compared to previous biocementation studies using the ureolytic route, the CA pathway is attractive as CA-producing bacteria can sequester CO2 to produce biocement. Clay soil samples were treated electrokinetically using biostimulation and bioaugmentation conditions to induce biocementation. The effects of the treatment were assessed in terms of undrained shear strength using the cone penetration test, moisture content, and calcium carbonate content measurements. Scanning electron microscopy (SEM) analyses were also conducted on soil samples before and after treatment to evaluate the reaction products. The results showed that upon biostimulation, the undrained shear strength of the soil increased uniformly throughout the soil, from 17.6 kPa (in the natural untreated state) to 106.6 kPa. SEM micrographs also showed a clear change in the soil structure upon biostimulation. Unlike biostimulation, bioaugmentation did not have the same performance, although a high amount of CaCO3 precipitates was detected, and bacteria were observed to have entered the soil. The prospects are exciting, as it was shown that it is possible to achieve a considerable strength increase by the biostimulation of native bacteria capturing CO2 while improving the soil strength, thus having the potential to contribute both to the resilience of existing railway infrastructure and to climate change mitigation.


Assuntos
Anidrases Carbônicas , Argila , Dióxido de Carbono , Bactérias , Solo
4.
Anal Sci ; 36(4): 459-464, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31866603

RESUMO

We developed a novel metal adsorbent composed of bio-based materials, cellulose and a protein. The approach involved the immobilization of a hexa-histidine tag (His6), which shows an affinity for an intermediate acid (metal ion) in Hard and Soft Acids and Bases (HSAB) theory, on cellulose by fusing with a carbohydrate-binding module (CBM). The results show that CBM-His6-bound cellulose has adsorption selectivity reflecting the original properties of His6. Additionally, we prepared three configurations of CBM-His6 proteins, which were subsequently immobilized on filter paper for Ni2+ ion adsorption. Of these configurations, we found that the protein containing two His6 tags at each terminus (N- and C-) of CBM exhibited the highest metal adsorption ability. Furthermore, XPS analysis confirmed the binding of Ni2+ ions on the cellulose.


Assuntos
Carboidratos/química , Celulose/química , Histidina/química , Níquel/química , Adsorção , Sítios de Ligação , Tamanho da Partícula , Proteínas/química , Propriedades de Superfície
5.
Chemosphere ; 246: 125733, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31901659

RESUMO

Intake of toxic trace elements in drinking water can lead to adverse health effects. To remove toxic trace elements from water, we developed a novel biosorbent composed of cellulose and a fusion protein. The fusion protein was constructed from metallothionein (MT) and a carbohydrate-binding module (CBM), where CBM can bind to cellulose while MT can capture heavy metal ions in solution. In a batch experiment, the biosorbent had maximum biosorption capacities for Pb(II) and Zn(II) ions of 39.02 mg/g and 29.28 mg/g, respectively. Furthermore, the biosorbent could be used in a semi-continuous system and showed good regeneration and recyclability. Both cellulose and the MT-CBM are environmentally friendly and renewable materials, and this biosorbent has great potential for efficient removal of toxic trace elements from polluted water.


Assuntos
Chumbo/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zinco/química , Adsorção , Celulose/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Chumbo/análise , Metalotioneína/química , Metalotioneína/metabolismo , Metais Pesados/análise , Água , Poluentes Químicos da Água/análise , Poluição da Água , Zinco/análise
6.
Sci Rep ; 10(1): 21189, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273589

RESUMO

The present study investigated biosorption of Pb (II) and Zn (II) using a heavy metal tolerant bacterium Oceanobacillus profundus KBZ 3-2 isolated from a contaminated site. The effects of process parameters such as effect on bacterial growth, pH and initial lead ion concentration were studied. The results showed that the maximum removal percentage for Pb (II) was 97% at an initial concentration of 50 mg/L whereas maximum removal percentage for Zn (II) was at 54% at an initial concentration of 2 mg/L obtained at pH 6 and 30 °C. The isolated bacteria were found to sequester both Pb (II) and Zn (II) in the extracellular polymeric substance (EPS). The EPS facilitates ion exchange and metal chelation-complexation by virtue of the existence of ionizable functional groups such as carboxyl, sulfate, and phosphate present in the protein and polysaccharides. Therefore, the use of indigenous bacteria in the remediation of contaminated water is an eco-friendly way of solving anthropogenic contamination.


Assuntos
Bacillaceae/metabolismo , Biodegradação Ambiental , Chumbo/metabolismo , Mineração , Poluentes Químicos da Água/metabolismo , Zinco/metabolismo , Adsorção , Bacillaceae/efeitos dos fármacos , Bacillaceae/crescimento & desenvolvimento , Meios de Cultura , Concentração de Íons de Hidrogênio , Soluções , Zâmbia
7.
Chemosphere ; 228: 17-25, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31022616

RESUMO

Environmental impacts resulting from historic lead and zinc mining in Kabwe, Zambia affect human health due to the dust generated from the mine waste that contains lead, a known hazardous pollutant. We employed microbially induced calcium carbonate precipitation (MICP), an alternative capping method, to prevent dust generation and reduce the mobility of contaminants. Pb-resistant Oceanobacillus profundus KBZ 1-3 and O. profundus KBZ 2-5 isolated from Kabwe were used to biocement the sand that would act as a cover to prevent dust and water infiltration. Sand biocemented by KBZ 1-3 and KBZ 2-5 had maximum unconfined compressive strength values of 3.2 MPa and 5.5 MPa, respectively. Additionally, biocemented sand exhibited reduced water permeability values of 9.6 × 10-8 m/s and 8.9 × 10-8 m/s for O. profundus KBZ 1-3 and KBZ 2-5, respectively, which could potentially limit the entrance of water and oxygen into the dump, hence reducing the leaching of heavy metals. We propose that these isolates represent an option for bioremediating contaminated waste by preventing both metallic dust from becoming airborne and rainwater from infiltrating into the waste. O. profundus KBZ 1-3 and O. profundus KBZ 2-5 isolated form Kabwe represent a novel species that has, for the first time, been applied in a bioremediation study.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Cimentação , Poeira/prevenção & controle , Dióxido de Silício/química , Carbonato de Cálcio , Precipitação Química , Chumbo , Mineração , Zâmbia
8.
Environ Sci Pollut Res Int ; 26(15): 15653-15664, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30949946

RESUMO

Biocementation of hazardous waste is used in reducing the mobility of contaminants, but studies on evaluating its efficacy have not been well documented. Therefore, to evaluate the efficacy of this method, physicochemical factors affecting stabilized hazardous products of in situ microbially induced calcium carbonate precipitation (MICP) were determined. The strength and leach resistance were investigated using the bacterium Pararhodobacter sp. Pb-contaminated kiln slag (KS) and leach plant residue (LPR) collected from Kabwe, Zambia, were investigated. Biocemented KS and KS/LPR had leachate Pb concentrations below the detection limit of < 0.001 mg/L, resisted slaking, and had maximum unconfined compressive strengths of 8 MPa for KS and 4 MPa for KS/LPR. Furthermore, biocemented KS and KS/LPR exhibited lower water absorption coefficient values, which could potentially reduce the water transportation of Pb2+. The results of this study show that MICP can reduce Pb2+ mobility in mine wastes. The improved physicochemical properties of the biocemented materials, therefore, indicates that this technique is an effective tool in stabilizing hazardous mine wastes and, consequently, preventing water and soil contamination.


Assuntos
Chumbo/toxicidade , Poluentes do Solo/análise , Resíduos Perigosos , Chumbo/química , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA