Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
F1000Res ; 11: 962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37224326

RESUMO

BACKGROUND: Non-tuberculous mycobacteria (NTM) treatment constitutes a macrolide-based antibiotic regimen in combination with aminoglycosides for Rapid-Growing Mycobacteria (RGM), and rifampicin for Slow-Growing Mycobacteria (SGM). Mutations in the anti-NTM drug target regions promote NTM evolution to mutant strains that are insusceptible to NTM drugs leading to treatment failure. We, therefore, described the mutation patterns of anti-NTM drug target genes including rrl, rrs, and rpoB in NTM isolates from Kenya.  Methods: We carried out a cross-sectional study that included 122 NTM obtained from the sputum of symptomatic tuberculosis-negative patients in Kenya. All 122 NTM underwent targeted sequencing of the rrl gene. The 54 RGM were also sequenced for rrs, and the 68 SGM were sequenced for rpoB genes using ABI 3730XL analyzer. The obtained sequences were aligned to their wild-type reference sequences for each gene using Geneious then mutations were identified. Pearson chi-square at a 95% confidence interval tested the association of NTM to mutation patterns for each gene. RESULTS: NTM harboring mutations associated with resistance to at least one of the antibiotics used in the macrolide-based therapy were 23% (28/122). Of these NTM, 10.4% (12/122) had mutations in the rrl gene with 58.3% (7/12) comprising RGM and 41.7% (5/12) being SGM. Mutation at position 2058 (A2058G, A2058C, A2058T) of the rrl gene was seen for 83.3% (10/12) of NTM, while 16.6% (2/12) harbored a A2059G mutation. Of the 54 RGM included for rrs characterization, 11.1% (6/54) exhibited mutations  at position 1408(A1408G), while 14.7% (10/68) of the SGM had mutations in the rpoB gene at positions S531W, S531L, S531Y, F506L, E509H with M.gastri having multiple mutations at positions D516V, H526D and, S531F. CONCLUSION: We demonstrated a significant level of mutations associated with drug resistance for macrolides, aminoglycosides, and rifampicin in NTM isolated from symptomatic TB negative patients in Kenya.


Assuntos
Aminoglicosídeos , Rifampina , Humanos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Rifampina/farmacologia , Rifampina/uso terapêutico , Micobactérias não Tuberculosas/genética , Quênia , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Estudos Transversais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mutação
2.
Int J Mycobacteriol ; 11(1): 60-69, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295025

RESUMO

Background: Non-Tuberculous Mycobacteria (NTM) transmission to humans occurs through inhalation of dust particles or vaporized water containing NTM leading to pulmonary manifestations. NTM infections are often misdiagnosed for tuberculosis (TB) due to their similar clinical and radiological manifestations. Aims and Objectives: We, therefore, performed a species-level identification of NTM in symptomatic TB negative patients through sequencing of the hsp65 gene. Materials and Methods: We conducted a cross-sectional study at the National Tuberculosis Reference Laboratory in the period between January to November 2020. One hundred and sixty-six mycobacterial culture-positive samples that tested negative for TB using capilia underwent Polymerase Chain Reaction targeting the hsp65 gene. Isolates showing a band with gel electrophoresis at 441 bp position were sequenced using Sanger technology. Geneious software was used to analyze the obtained sequences, and the National Center for Biotechnology Information gene database identified NTM species for each isolate. A phylogenetic tree was constructed from the DNA sequences and evolutionary distances computed using the general time-reversible method. Pearson chi-square was used to determine the association between NTM infection and participants' characteristics. Results: Our study identified 43 different NTM species. The dominant NTM belonged to Mycobacterium avium complex 37 (31%). Slow-growing NTM were the majority at 86 (71%) while rapid-growing NTM were 36 (29%). A significant association (P<0.05) was observed for regions and age, while patient type had a weak likelihood of NTM infection. Conclusion: Our study characterized the diversity of NTM in Kenya for the first time and showed that species belonging to M. Avium Complex are the most prevalent in the country.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Tuberculose , Estudos Transversais , Variação Genética , Humanos , Quênia/epidemiologia , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas , Filogenia , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA