Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2313475121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976729

RESUMO

CO2 mineralization products are often heralded as having outstanding potentials to reduce CO2-eq. emissions. However, these claims are generally undermined by incomplete consideration of the life cycle climate change impacts, material properties, supply and demand constraints, and economic viability of CO2 mineralization products. We investigate these factors in detail for ten concrete-related CO2 mineralization products to quantify their individual and global CO2-eq. emissions reduction potentials. Our results show that in 2020, 3.9 Gt of carbonatable solid materials were generated globally, with the dominant material being end-of-life cement paste in concrete and mortar (1.4 Gt y-1). All ten of the CO2 mineralization technologies investigated here reduce life cycle CO2-eq. emissions when used to substitute comparable conventional products. In 2020, the global CO2-eq. emissions reduction potential of economically competitive CO2 mineralization technologies was 0.39 Gt CO2-eq., i.e., 15% of that from cement production. This level of CO2-eq. emissions reduction is limited by the supply of end-of-life cement paste. The results also show that it is 2 to 5 times cheaper to reduce CO2-eq. emissions by producing cement from carbonated end-of-life cement paste than carbon capture and storage (CCS), demonstrating its superior decarbonization potential. On the other hand, it is currently much more expensive to reduce CO2-eq. emissions using some CO2 mineralization technologies, like carbonated normal weight aggregate production, than CCS. Technologies and policies that increase recovery of end-of-life cement paste from aged infrastructure are key to unlocking the potential of CO2 mineralization in reducing the CO2-eq. footprint of concrete materials.

2.
Environ Sci Technol ; 55(5): 2767-2778, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33615791

RESUMO

Dwellings are material intensive products. To date, material use in dwellings has been investigated mainly using economic (exogenous) or dwelling (endogenous) drivers, with few studies comprehensively combining both. For the first time, we identify a comprehensive set of such drivers of demand for building materials and analyze them using the logarithmic mean divisia index (LMDI) method. We combine the LMDI method, the concept of dynamic material flow analysis, and physical and monetary flows to decompose the demand for building materials into the following six effects: material intensity, floor area shape, dwelling type, dwelling intensity, economic output, and population. We analyze these six effects on demand for concrete in new dwellings in the U.K. from 1951 to 2014, classified into six dwelling types and four subregions. Of these six effects, the material intensity effect is the most important, overall contributing to increasing concrete demand by +79 Mt from 1950 to 2014, while the dwelling intensity effect plays an opposite role, overall reducing concrete demand from 1950 to 2014 by -56 Mt. The economic output effect is also significant (+38 Mt from 1950 to 2014). A comparative analysis of the six effects in the four U.K. nations reveals that most of the effects arise from England, while the other nations have minor effects due to their smaller populations. Our results show that changes to the demand for concrete in the U.K. fluctuate and have mainly remained between ±30 Mt year-2 from 1950 to 2014, and thus the inflows of concrete into the in-use stock of dwellings have experienced neither entirely increasing or decreasing trends during this period. This study contributes to understanding changes in resource demand due to social, economic, and technological factors and thus improves the capability to reliably and quantitatively model the use of materials in the built environment.


Assuntos
Dióxido de Carbono , Materiais de Construção , Dióxido de Carbono/análise , China , Inglaterra
3.
Environ Sci Technol ; 54(2): 677-686, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31852181

RESUMO

Cement production is among the most difficult industrial activities to decarbonize. Various measures have been proposed and explored to reduce its CO2 emissions. Among these measures, the substitution of portland cement (PC) clinker with alternative materials is arguably the most effective, and consequently is an area of high research and commercial interest. However, few studies have systematically quantified environmental impacts of alternative, i.e., non-PC, clinkers. Here, we quantify and compare environmental impacts arising from the production of binders derived from several of the most commonly investigated alternative cement systems. We show that binders derived from most of these alternative cements result in lower greenhouse gas (GHG) emissions as well as other indicators of environmental impacts relative to the PC binder. The extent of these reductions varies as a function of energy requirements for production, process-related emissions from clinker formation, and raw materials demand. While utilization of alternative cements can be environmentally beneficial, similar reductions in GHG emissions can be achieved through use of partial replacement of PC with mineral admixtures. In this work, we quantitatively demonstrate the potential for alternative binders to mitigate environmental burdens and highlight the need to consider trade-offs among environmental impact categories when assessing these products.


Assuntos
Materiais de Construção , Meio Ambiente , Efeito Estufa
4.
Environ Sci Technol ; 54(12): 7651-7658, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32469515

RESUMO

Living Filtration Membranes (LFMs) are a water filtration technology that was recently developed in the lab (Technology Readiness Level 4). LFMs have shown filtration performance comparable with that of ultrafiltration, far better fouling resistance than conventional polymer membranes, and good healing capabilities. These properties give LFMs promise to address two significant issues in conventional membrane filtration: fouling and membrane damage. To integrate environmental considerations into future technology development (i.e., Ecodesign), this study assesses the life cycle environmental performance of drinking water treatment using LFMs under likely design and operation conditions. It also quantitatively ranks the engineering design and operation factors governing the further optimization of LFM environmental performance using a global sensitivity analysis. The results suggest that LFMs' superior fouling resistance will reduce the life cycle environmental impacts of ultrafiltration by 25% compared to those of a conventional polymer membrane in most impact categories (e.g., acidification, global warming potential, and carcinogenics). The only exception is the eutrophication impact, where the need for growth medium and membrane regeneration offsets the benefits of LFMs' fouling resistance. Permeability is the most important factor that should be prioritized in future R&D to further improve the life cycle environmental performance of LFMs. A 1% improvement in the permeability will lead to a ∼0.7% improvement in LFMs' environmental performance in all the impact categories, whereas the same change in the other parameters investigated (e.g., LFM lifespan and regeneration frequency) typically only leads to a <0.2% improvement.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração , Permeabilidade , Ultrafiltração
5.
Langmuir ; 33(1): 45-55, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27977205

RESUMO

The workability of fresh Portland cement (PC) concrete critically depends on the reaction of the cubic tricalcium aluminate (C3A) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling mechanism is poorly understood. In this article, the role of adsorption phenomena in C3A dissolution in aqueous Ca-, S-, and polynaphthalene sulfonate (PNS)-containing solutions is analyzed. The zeta potential and pH results are consistent with the isoelectric point of C3A occurring at pH ∼12 and do not show an inversion of its electric double layer potential as a function of S or Ca concentration, and PNS adsorbs onto C3A, reducing its zeta potential to negative values at pH >12. The S and Ca K-edge X-ray absorption spectroscopy (XAS) data obtained do not indicate the structural incorporation or specific adsorption of SO42- on the partially dissolved C3A solids analyzed. Together with supporting X-ray ptychography and scanning electron microscopy results, a model for C3A dissolution inhibition in hydrated PC systems is proposed whereby the formation of an Al-rich leached layer and the complexation of Ca-S ion pairs onto this leached layer provide the key inhibiting effect(s). This model reconciles the results obtained here with the existing literature, including the inhibiting action of macromolecules such as PNS and polyphosphonic acids upon C3A dissolution. Therefore, this article advances the understanding of the rate-controlling mechanism in hydrated C3A and thus PC systems, which is important to better controlling the workability of fresh PC concrete.

7.
Langmuir ; 29(17): 5294-306, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23534827

RESUMO

Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium-sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium-sodium aluminosilicate gel structures than that previously established in the literature.


Assuntos
Silicatos de Alumínio/química , Compostos de Cálcio/química , Cálcio/química , Reagentes de Ligações Cruzadas/química , Géis/química , Silicatos/química , Sódio/química , Modelos Moleculares , Estrutura Molecular , Água/química
8.
Nat Commun ; 13(1): 5758, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180443

RESUMO

Population and development megatrends will drive growth in cement production, which is already one of the most challenging-to-mitigate sources of CO2 emissions. However, availabilities of conventional secondary cementitious materials (CMs) like fly ash are declining. Here, we present detailed generation rates of secondary CMs worldwide between 2002 and 2018, showing the potential for 3.5 Gt to be generated in 2018. Maximal substitution of Portland cement clinker with these materials could have avoided up to 1.3 Gt CO2-eq. emissions (~44% of cement production and ~2.8% of anthropogenic CO2-eq. emissions) in 2018. We also show that nearly all of the highest cement producing nations can locally generate and use secondary CMs to substitute up to 50% domestic Portland cement clinker, with many countries able to potentially substitute 100% Portland cement clinker. Our results highlight the importance of pursuing regionally optimized CM mix designs and systemic approaches to decarbonizing the global CMs cycle.

9.
Ecol Evol ; 12(8): e9132, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35923942

RESUMO

Socioeconomic demand for natural capital is causing catastrophic losses of biodiversity and ecosystem functionality, most notably in regions where socioeconomic-and eco-systems compete for natural capital, e.g., energy (animal or plant matter). However, a poor quantitative understanding of what natural capital is needed to support biodiversity in ecosystems, while at the same time satisfy human development needs-those associated with human development within socioeconomic systems-undermines our ability to sustainably manage global stocks of natural capital. Here we describe a novel concept and accompanying methodology (relating the adult body mass of terrestrial species to their requirements for land area, water, and energy) to quantify the natural capital needed to support terrestrial species within ecosystems, analogous to how natural capital use by humans is quantified in a socioeconomic context. We apply this methodology to quantify the amount of natural capital needed to support species observed using a specific surveyed site in Scotland. We find that the site can support a larger assemblage of species than those observed using the site; a primary aim of the rewilding project taking place there. This method conceptualises, for the first time, a comprehensive "dual-system" approach: modelling natural capital use in socioeconomic-and eco-systems simultaneously. It can facilitate the management of natural capital at the global scale, and in both the conservation and creation (e.g., rewilding) of biodiversity within managed ecosystems, representing an advancement in determining what socioeconomic trade-offs are needed to achieve contemporary conservation targets alongside ongoing human development.

10.
Nat Commun ; 11(1): 3777, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728073

RESUMO

Cement plays a dual role in the global carbon cycle like a sponge: its massive production contributes significantly to present-day global anthropogenic CO2 emissions, yet its hydrated products gradually reabsorb substantial amounts of atmospheric CO2 (carbonation) in the future. The role of this sponge effect along the cement cycle (including production, use, and demolition) in carbon emissions mitigation, however, remains hitherto unexplored. Here, we quantify the effects of demand- and supply-side mitigation measures considering this material-energy-emissions-uptake nexus, finding that climate goals would be imperiled if the growth of cement stocks continues. Future reabsorption of CO2 will be significant (~30% of cumulative CO2 emissions from 2015 to 2100), but climate goal compliant net CO2 emissions reduction along the global cement cycle will require both radical technology advancements (e.g., carbon capture and storage) and widespread deployment of material efficiency measures, which go beyond those envisaged in current technology roadmaps.

11.
Sci Data ; 6(1): 84, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175305

RESUMO

We present the Yale Stocks and Flows Database (YSTAFDB), which comprises most of the material stocks and flows (STAF) data generated at the Center for Industrial Ecology at Yale University since the early 2000s. These data describe material cycles, criticality, and recycling in terms of 62 elements and various engineering materials, e.g., steel, on spatial scales and timeframes ranging from cities to global and the 1800s to ca. 2013. YSTAFDB integrates this diverse collection of STAF data, previously scattered across various non-uniformly formatted electronic files, into a single data structure and file format. Here, we discuss this data structure as well as the usage and formatting of data records in YSTAFDB. YSTAFDB contains 100,000+ data records that are all situated in their systems contexts, with additional metadata included as available. YSTAFDB offers a comprehensive basis upon which STAF data can be accumulated, integrated, and exchanged, and thereby improves their accessibility. Therefore, YSTAFDB facilitates deeper understanding of sustainable materials use and management, which are key goals of contemporary sustainability science.

12.
Materials (Basel) ; 11(4)2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-29642445

RESUMO

The tricalcium aluminate (C3A) and sulfate content in cement influence the hydration chemistry, setting time and rheology of cement paste, mortar and concrete. Here, in situ experiments are performed to better understand the effect of gypsum on the early hydration of cubic (cub-)C3A and Na-doped orthorhombic (orth-)C3A. The isothermal calorimetry data show that the solid-phase assemblage produced by the hydration of C3A is greatly modified as a function of its crystal structure type and gypsum content, the latter of which induces non-linear changes in the heat release rate. These data are consistent with the in situ X-ray diffraction results, which show that a higher gypsum content accelerates the consumption of orth-C3A and the subsequent precipitation of ettringite, which is contrary to the cub-C3A system where gypsum retarded the hydration rate. These in situ results provide new insight into the relationship between the chemistry and early-age properties of cub- and orth-C3A hydration and corroborate the reported ex situ findings of these systems.

13.
Sci Rep ; 7(1): 10986, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887517

RESUMO

Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.

14.
Sci Rep ; 7: 44032, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281635

RESUMO

The incorporation of Al and increased curing temperature promotes the crystallization and cross-linking of calcium (alumino)silicate hydrate (C-(A-)S-H), which is the primary binding phase in most contemporary concrete materials. However, the influence of Al-induced structural changes on the mechanical properties at atomistic scale is not well understood. Herein, synchrotron radiation-based high-pressure X-ray diffraction is used to quantify the influence of dreierketten chain cross-linking on the anisotropic mechanical behavior of C-(A-)S-H. We show that the ab-planar stiffness is independent of dreierketten chain defects, e.g. vacancies in bridging tetrahedra sites and Al for Si substitution. The c-axis of non-cross-linked C-(A-)S-H is more deformable due to the softer interlayer opening but stiffens with decreased spacing and/or increased zeolitic water and Ca2+ of the interlayer. Dreierketten chain cross-links act as 'columns' to resist compression, thus increasing the bulk modulus of C-(A-)S-H. We provide the first experimental evidence on the influence of the Al-induced atomistic configurational change on the mechanical properties of C-(A-)S-H. Our work advances the fundamental knowledge of C-(A-)S-H on the lowest level of its hierarchical structure, and thus can impact the way that innovative C-(A-)S-H-based cementitious materials are developed using a 'bottom-up' approach.

15.
Dalton Trans ; 44(30): 13530-44, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26134354

RESUMO

The interplay between the solubility, structure and chemical composition of calcium (alkali) aluminosilicate hydrate (C-(N,K-)A-S-H) equilibrated at 50 °C is investigated in this paper. The tobermorite-like C-(N,K-)A-S-H products are more crystalline in the presence of alkalis, and generally have larger basal spacings at lower Ca/Si ratios. Both Na and K are incorporated into the interlayer space of the C-(N,K-)A-S-H phases, with more alkali uptake observed at higher alkali and lower Ca content. No relationship between Al and alkali uptake is identified at the Al concentrations investigated (Al/Si ≤ 0.1). More stable C-(N,K-)A-S-H is formed at higher alkali content, but this factor is only significant in some samples with Ca/Si ratios ≤1. Shorter chain lengths are formed at higher alkali and Ca content, and cross-linking between (alumino)silicate chains in the tobermorite-like structure is greatly promoted by increasing alkali and Al concentrations. The calculated solubility products do not depend greatly on the mean chain length in C-(N,K-)A-S-H at a constant Ca/(Al + Si) ratio, or the Al/Si ratio in C-(N,K-)A-S-H. These results are important for understanding the chemical stability of C-(N,K-)A-S-H, which is a key phase formed in the majority of cements and concretes used worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA