RESUMO
Methylmercury (MeHg) is a well-known environmental contaminant, particularly harmful to the developing brain. The main human dietary exposure to MeHg occurs through seafood consumption. However, seafood also contains several nutrients, including selenium, which has been shown to interact with MeHg and potentially ameliorate its toxicity. The aim of this study was to investigate the combined effects of selenium (as selenomethionine; SeMet) and MeHg on mercury accumulation in tissues and the effects concomitant dietary exposure of these compounds exert on the hippocampal proteome and transcriptome in mice. Adolescent male BALB/c mice were exposed to SeMet and two different doses of MeHg through their diet for 11 weeks. Organs, including the brain, were sampled for mercury analyses. Hippocampi were collected and analyzed using proteomics and transcriptomics followed by multi-omics bioinformatics data analysis. The dietary presence of SeMet reduced the amount of mercury in several organs, including the brain. Proteomic and RNA-seq analyses showed that both protein and RNA expression patterns were inversely regulated in mice receiving SeMet together with MeHg compared to MeHg alone. Several pathways, proteins and RNA transcripts involved in conditions such as immune responses and inflammation, oxidative stress, cell plasticity and Alzheimer's disease were affected inversely by SeMet and MeHg, indicating that SeMet can ameliorate several toxic effects of MeHg in mice.
Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Masculino , Adolescente , Animais , Humanos , Camundongos , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/análise , Selenometionina/farmacologia , Transcriptoma , Selênio/metabolismo , Proteoma/metabolismo , Proteômica , Camundongos Endogâmicos BALB C , Dieta , Antioxidantes , Hipocampo/metabolismo , RNARESUMO
Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio.
Assuntos
Dieta com Restrição de Gorduras , Proteínas Alimentares/farmacocinética , Sacarose Alimentar/farmacocinética , Microbioma Gastrointestinal/fisiologia , Obesidade/metabolismo , Taxa de Sobrevida , Animais , Proteínas Alimentares/administração & dosagem , Proteínas Alimentares/efeitos adversos , Sacarose Alimentar/efeitos adversos , Feminino , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologiaRESUMO
Methylmercury (MeHg) is a ubiquitous environmental contaminant, well known for its neurotoxic effects. MeHg can interact with several nutrients in the diet and affect nutrient metabolism, however the interaction between MeHg and dietary proteins has not been thoroughly investigated. Male BALB/c mice were fed diets based on either casein, cod or chicken as protein sources, which were or were not spiked with MeHg (3.5 mg Hg kg-1). Following 13 weeks of dietary exposure to MeHg, the animals accumulated mercury in a varying degree depending on the diet, where the levels of mercury were highest in the mice fed casein and MeHg, lower in mice fed cod and MeHg, and lowest in mice fed chicken and MeHg in all tissues assessed. Assessment of gut microbiota revealed differences in microbiota composition based on the different protein sources. However, the introduction of MeHg eliminated this difference. Proteomic profiling of liver tissue uncovered the influence of the dietary protein sources on a range of enzymes related to Phase I and Phase II detoxification mechanisms, suggesting an impact of the diet on MeHg metabolism and excretion. Also, enzymes linked to pathways including methionine and glycine betaine cycling, which in turn impact the production of glutathione, an important MeHg conjugation molecule, were up-regulated in mice fed chicken as dietary protein. Our findings indicate that dietary proteins can affect expression of hepatic enzymes that potentially influence MeHg metabolism and excretion, highlighting the relevance of considering the dietary composition in risk assessment of MeHg through dietary exposure.
Assuntos
Proteínas Alimentares , Fígado , Compostos de Metilmercúrio , Camundongos Endogâmicos BALB C , Animais , Compostos de Metilmercúrio/metabolismo , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Proteínas Alimentares/metabolismo , Mercúrio/metabolismo , Camundongos , Galinhas , Microbioma Gastrointestinal/efeitos dos fármacos , Exposição Dietética/efeitos adversos , DietaRESUMO
SCOPE: Dietary constituents modulate development of obesity and type 2 diabetes. The metabolic impact from different food sources in western diets (WD) on obesity development is not fully elucidated. This study aims to identify dietary sources that differentially affect obesity development and the metabolic processes involved. METHODS AND RESULTS: Mice were fed isocaloric WDs with protein and fat from different food groups, including egg and dairy, terrestrial meat, game meat, marine, vegetarian, and a mixture of all. This study evaluates development of obesity, glucose tolerance, insulin sensitivity, and plasma and cecal metabolome. WD based on marine or vegetarian food sources protects male mice from obesity development and insulin resistance, whereas meat-based diets promote obesity. The intake of different food sources induces marked differences in the lipid-related plasma metabolome, particularly impacting phosphatidylcholines. Fifty-nine lipid-related plasma metabolites are positively associated with adiposity and a distinct cecal metabolome is found in mice fed a marine diet. CONCLUSION: This study demonstrates differences in obesity development between the food groups. Diet specific metabolomic signatures in plasma and cecum associated with adiposity, where a marine based diet modulates the level of plasma and cecal phosphatidylcholines in addition to preventing obesity development.
Assuntos
Ceco , Dieta Ocidental , Resistência à Insulina , Metaboloma , Camundongos Endogâmicos C57BL , Obesidade , Animais , Obesidade/metabolismo , Obesidade/etiologia , Ceco/metabolismo , Masculino , Camundongos , Carne/análise , AdiposidadeRESUMO
The consumption of seaweed is on the rise in the Western world. Seaweeds may contain substantial amounts of iodine, and some species could serve as a potential dietary iodine source. However, limited data on the iodine content and in vivo bioavailability of iodine from seaweeds exist. The objective was to assess whether iodine from a meal consisting of sushi with nori, (Porphyra spp) and a wakame seaweed salad (Undaria pinnatifida) had similar bioavailability as a potassium iodide reference supplement of similar iodine content. A randomized 2 × 2 crossover trial (AB/BA model) was conducted in 20 healthy young women. One intervention arm consisted of a meal with sushi and wakame salad (231 µg iodine), and the other of potassium iodide (KI) supplement (225 µg iodine). Urinary iodine concentration (UIC) was measured at 11 different time points for 48 h after the interventions. The UIC increased after consumption of both the sushi and wakame meal and the KI supplement, but the median UIC was higher after ingestion of the KI supplement. The estimated bioavailability of iodine during the first 24 h was 75% from sushi with wakame and 97% from the KI supplement. The bioequivalence analyses confirmed that the KI supplement had higher estimated bioavailability than the sushi and wakame meal, however, with small margins. Our findings on iodine bioavailability imply that sushi and wakame could be potential iodine sources in the diet, which may be favorable for population groups at risk for iodine deficiency. However, further research is needed to account for the variability of iodine content in seaweeds by different locations and degree of processing, to assure that the iodine levels are stable and predictable for the consumers.
RESUMO
Alternative feed ingredients for farmed salmon are warranted due to increasing pressure on wild fish stocks. As locally farmed blue mussels may represent an environmentally sustainable substitute with a lower carbon footprint, we aimed to test the potential and safety of substituting fish meal with blue mussel meal in feed for Atlantic salmon. Salmon were fed diets in which fish meal was partially replaced with blue mussel meal in increments, accounting for up to 13.1 % of the ingredients. Fillets from the salmon were subsequently used to prepare obesity-promoting western diets for a 13-weeks mouse feeding trial. In a second mouse trial, we tested the effects of inclusion of up to 8% blue mussel meal directly in a meat-based western diet. Partial replacement of fish meal with blue mussel meal in fish feed preserved the n-3 polyunsaturated fatty acid (PUFA) content in salmon fillets. The observed blue mussel-induced changes in the fatty acid profiles in salmon fillets did not translate into similar changes in the livers of mice that consumed the salmon, and no clear dose-dependent responses were found. The relative levels of the marine n-3 fatty acids, EPA, and DHA were not reduced, and the n-3/n-6 PUFA ratios in livers from all salmon-fed mice were unchanged. The inclusion of blue mussel meal in a meat-based western diet led to a small, but dose-dependent increase in the n-3/n-6 PUFA ratios in mice livers. Diet-induced obesity, glucose intolerance, and hepatic steatosis were unaffected in both mice trials and no blue mussel-induced adverse effects were observed. In conclusion, our results suggest that replacing fish meal with blue mussel meal in salmon feed will not cause adverse effects in those who consume the salmon fillets.
Assuntos
Ácidos Graxos Ômega-3 , Mytilus edulis , Salmo salar , Animais , Camundongos , Dieta Ocidental , Ácidos Graxos/metabolismo , Mytilus edulis/metabolismo , Obesidade , Salmo salar/metabolismo , Alimentos MarinhosRESUMO
Fish oil rich in n-3 polyunsaturated fatty acids is known to attenuate diet-induced obesity and adipose tissue inflammation in rodents. Here we aimed to investigate whether different carbohydrate sources modulated the antiobesity effects of fish oil. By feeding C57BL/6J mice isocaloric high-fat diets enriched with fish oil for 6 wk, we show that increasing amounts of sucrose in the diets dose-dependently increased energy efficiency and white adipose tissue (WAT) mass. Mice receiving fructose had about 50% less WAT mass than mice fed a high fish oil diet supplemented with either glucose or sucrose, indicating that the glucose moiety of sucrose was responsible for the obesity-promoting effect of sucrose. To investigate whether the obesogenic effect of sucrose and glucose was related to stimulation of insulin secretion, we combined fish oil with high and low glycemic index (GI) starches. Mice receiving the fish oil diet containing the low-GI starch had significantly less WAT than mice fed high-GI starch. Moreover, inhibition of insulin secretion by administration of nifedipine significantly reduced WAT mass in mice fed a high-fish oil diet in combination with sucrose. Our data show that the macronutrient composition of the diet modulates the effects of fish oil. Fish oil combined with sucrose, glucose, or high-GI starch promotes obesity, and the reported anti-inflammatory actions of fish oil are abrogated. In conclusion, our data indicate that glycemic control of insulin secretion modulates metabolic effects of fish oil by demonstrating that high-GI carbohydrates attenuate the antiobesity effects of fish oil.
Assuntos
Fármacos Antiobesidade/uso terapêutico , Carboidratos da Dieta/metabolismo , Óleos de Peixe/uso terapêutico , Índice Glicêmico/fisiologia , Insulina/sangue , Obesidade/metabolismo , Animais , Fármacos Antiobesidade/metabolismo , Relação Dose-Resposta a Droga , Óleos de Peixe/metabolismo , Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , SacaroseRESUMO
Suboptimal iodine status is a prominent public health issue in several European coun-tries. Brown algae have a high iodine content that, upon intake, may exceed the recommended dietary intake level, but iodine bioavailability has been reported to be lower than from potassium iodide (KI) and highly depends on algae species. Further, potential negative effects from other components in algae, such as cadmium (Cd) and arsenic (As), have also been addressed. In this study, we observed a lower bioavailability of iodine from farmed sugar kelp (Saccharina latissima) than from KI in female Wistar IGS rats. Urinary iodine excretion was 94-95% in rats fed KI and 73-81% in rats fed sugar kelp, followed by increased faecal iodine levels in rats fed sugar kelp. No effects on body weight, feed efficiency, or plasma markers for liver or kidney damage were detected. The highest dose of iodine reduced plasma free thyroxine (fT4) and total T4 levels, but no significant effects on circulating levels of thyroid-stimulating hormone (TSH) and free triiodo-thyronine (fT3) were detected. Faeces and urine measurements indicate that 60-80% of total As and 93% of Cd ingested were excreted in rats fed 0.5 and 5% kelp. Liver metabolomic profiling demonstrates that a high inclusion of sugar kelp in the diet for 13 weeks of feeding modulates metabolites with potential antioxidant activity and phytosterols.
RESUMO
Methylmercury (MeHg) is a highly neurotoxic form of mercury (Hg) present in seafood. Here, we recorded and compared proteomic and transcriptomic changes in hippocampus of male BALB/c mice exposed to two doses of MeHg. Mice were fed diets spiked with 0.28 mg MeHg kg-1, 5 mg MeHg kg-1, or an unspiked control diet for 77 days. Total mercury content was significantly (P < 0.05) increased in brain tissue of both MeHg-exposed groups (18 ± 2 mg Hg kg-1 and 0.56 ± 0.06 mg Hg kg-1). Hippocampal protein and ribonucleic acid (RNA) expression levels were significantly altered both in tissues from mice receiving a low dose MeHg (20 proteins/294 RNA transcripts) and a high dose MeHg (61 proteins/876 RNA transcripts). The majority but not all the differentially expressed features in hippocampus were dose dependent. The combined use of transcriptomic and proteomic profiling data provided insight on the influence of MeHg on neurotoxicity, energy metabolism, and oxidative stress through several regulated features and pathways, including RXR function and superoxide radical degradation.
Assuntos
Dieta , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Compostos de Metilmercúrio/farmacologia , Estresse Oxidativo , Proteoma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Animais , Perfilação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB CRESUMO
Fillets from marine fish species contain n-3 polyunsaturated fatty acids (PUFAs) in the form of phospholipids (PLs). To investigate the importance of PL-bound n-3 PUFAs in mediating the anti-obesogenic effect of lean seafood, we compared the anti-obesogenic properties of fillets from cod with fillets from pangasius, a fresh water fish with a very low content of PL-bound n-3 PUFAs. We prepared high-fat/high-protein diets using chicken, cod and pangasius as the protein sources, and fed male C57BL/6J mice these diets for 12 weeks. Mice fed the diet containing cod gained less adipose tissue mass and had smaller white adipocytes than mice fed the chicken-containing diet, whereas mice fed the pangasius-containing diet were in between mice fed the chicken-containing diet and mice fed the cod-containing diet. Of note, mice fed the pangasius-containing diet exhibited reduced glucose tolerance compared to mice fed the cod-containing diet. Although the sum of marine n-3 PUFAs comprised less than 2% of the total fatty acids in the cod-containing diet, this was sufficient to significantly increase the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) in mouse tissues and enhance production of n-3 PUFA-derived lipid mediators as compared with mice fed pangasius or chicken.
Assuntos
Fármacos Antiobesidade/análise , Peixes-Gato , Ácidos Graxos/análise , Gadus morhua , Alimentos Marinhos/análise , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/métodos , Dieta Rica em Proteínas/métodos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Ômega-3/análise , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Produtos AvícolasRESUMO
Low-fat diets and exercise are generally assumed to ameliorate obesity-related metabolic dysfunctions, but the importance of exercise vs. dietary changes is debated. Male C57BL/6J mice were fed a high-fat/high-sucrose (HF/HS) diet to induce obesity and then either maintained on the HF/HS or shifted to low-fat (LF) diets containing either salmon or entrecote. For each diet, half of the animals exercised voluntarily for 8 weeks. We determined body composition, glucose tolerance, insulin sensitivity and hepatic triacylglycerol levels. The microbiota composition in cecal and fecal samples was analyzed using 16S ribosomal RNA gene amplicon sequencing. Voluntary exercise improved insulin sensitivity but did not improve glucose tolerance. Voluntary exercise did not reduce adiposity in mice maintained on an HF/HS diet but enhanced LF-induced reduction in adiposity. Hepatic triacylglycerol levels were reduced by voluntary exercise in LF- but not HF/HS-fed mice. Voluntary exercise induced shifts in the cecal and fecal microbiota composition and functional potential in mice fed LF or HF/HS diets. Whereas voluntary exercise improved insulin sensitivity, a switch to an LF diet was the most important factor related to body weight and fat mass reduction.
Assuntos
Adiposidade , Proteínas Alimentares/farmacologia , Resistência à Insulina , Obesidade/terapia , Animais , Peso Corporal , Dieta com Restrição de Gorduras , Gorduras na Dieta/farmacocinética , Ingestão de Energia , Microbioma Gastrointestinal , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Nitrogênio/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Condicionamento Físico Animal , Salmão , Triglicerídeos/metabolismoRESUMO
Low-fat diets and energy restriction are recommended to prevent obesity and to induce weight loss, but high-protein diets are popular alternatives. However, the importance of the protein source in obesity prevention and weight loss is unclear. The aim of this study was to investigate the ability of different animal protein sources to prevent or reverse obesity by using lean or obese C57BL/6J mice fed high-fat/high-protein or low-fat diets with casein, cod or pork as protein sources. Only the high-fat/high-protein casein-based diet completely prevented obesity development when fed to lean mice. In obese mice, ad libitum intake of a casein-based high-fat/high-protein diet modestly reduced body mass, whereas a pork-based high-fat/high-protein diet aggravated the obese state and reduced lean body mass. Caloric restriction of obese mice fed high-fat/high-protein diets reduced body weight and fat mass and improved glucose tolerance and insulin sensitivity, irrespective of the protein source. Finally, in obese mice, ad libitum intake of a low-fat diet stabilized body weight, reduced fat mass and increased lean body mass, with the highest loss of fat mass found in mice fed the casein-based diet. Combined with caloric restriction, the casein-based low-fat diet resulted in the highest loss of fat mass. Overall, the dietary protein source has greater impact in obesity prevention than obesity reversal.
Assuntos
Adiposidade , Ração Animal , Glicemia/metabolismo , Restrição Calórica , Dieta com Restrição de Gorduras , Dieta Rica em Proteínas , Proteínas Alimentares/administração & dosagem , Obesidade/dietoterapia , Animais , Índice de Massa Corporal , Proteínas Alimentares/metabolismo , Modelos Animais de Doenças , Insulina/sangue , Masculino , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/fisiopatologia , Redução de PesoRESUMO
High protein diets have become popular for body weight maintenance and weight loss despite controversies regarding efficacy and safety. Although both weight gain and weight loss are determined by energy consumption and expenditure, data from rodent trials consistently demonstrate that the protein:carbohydrate ratio in high fat diets strongly influences body and fat mass gain per calorie eaten. Here, we review data from rodent trials examining how high protein diets may modulate energy metabolism and the mechanisms by which energy may be dissipated. We discuss the possible role of activating brown and so-called beige/BRITE adipocytes including non-canonical UCP1-independent thermogenesis and futile cycles, where two opposing metabolic pathways are operating simultaneously. We further review data on how the gut microbiota may affect energy expenditure. Results from human and rodent trials demonstrate that human trials are less consistent than rodent trials, where casein is used almost exclusively as the protein source. The lack of consistency in results from human trials may relate to the specific design of human trials, the possible distinct impact of different protein sources, and/or the differences in the efficiency of high protein diets to attenuate obesity development in lean subjects vs. promoting weight loss in obese subjects.
RESUMO
A large fraction of the n-3 polyunsaturated fatty acids (PUFAs) in cod fillet is present in the form of phospholipids (PLs). Freezing initiates hydrolysis of the PLs present in the fillet. Here, we compared the effects of Western diets based on frozen cod, fresh cod or pork with a diet based on casein in male C57BL/6J mice fed for 12 weeks at thermoneutrality. Diets based on fresh cod contained more PL-bound n-3 PUFAs (3.12 mg/g diet) than diets based on frozen cod (1.9 mg/g diet). Mice fed diets containing pork and fresh cod, but not frozen cod, gained more body and fat mass than casein-fed mice. Additionally, the bioavailability of n-3 PUFAs present in the cod fillets was not influenced by storage conditions. In a second experiment, diets with pork as the protein source were supplemented with n-3 PUFAs in the form of PL or triacylglycerol (TAG) to match the levels of the diet containing fresh cod. Adding PL-bound, but not TAG-bound, n-3 PUFAs, to the pork-based diet increased body and fat mass gain. Thus, supplementation with PL-bound n-3 PUFAs did not protect against, but rather promoted, obesity development in mice fed a pork-based diet.
Assuntos
Dieta com Restrição de Gorduras , Armazenamento de Alimentos , Alimentos Congelados/análise , Gadus morhua , Obesidade/prevenção & controle , Fosfolipídeos/análise , Alimentos Marinhos/análise , Adiposidade , Animais , Dieta Ocidental/efeitos adversos , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/análise , Gorduras na Dieta/metabolismo , Digestão , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/análise , Liofilização , Masculino , Carne/efeitos adversos , Camundongos Endogâmicos C57BL , Valor Nutritivo , Obesidade/etiologia , Sus scrofa , Aumento de PesoRESUMO
The present study aimed to identify genes exhibiting concomitant obesity-dependent changes in DNA methylation and gene expression in adipose tissues in the mouse using diet-induced obese (DIO) C57BL/6J and genetically obese ob/ob mice as models. Mature adipocytes were isolated from epididymal and inguinal adipose tissues of ob/ob and DIO C57BL/6J mice. DNA methylation was analyzed by MeDIP-sequencing and gene expression by microarray analysis. The majority of differentially methylated regions (DMRs) were hypomethylated in obese mice. Global methylation of long interspersed elements indicated that hypomethylation did not reflect methyl donor deficiency. In both DIO and ob/ob mice, we observed more obesity-associated methylation changes in epididymal than in inguinal adipocytes. Assignment of DMRs to promoter, exon, intron and intergenic regions demonstrated that DIO-induced changes in DNA methylation in C57BL/6J mice occurred primarily in exons, whereas inguinal adipocytes of ob/ob mice exhibited a higher enrichment of DMRs in promoter regions than in other regions of the genome, suggesting an influence of leptin on DNA methylation in inguinal adipocytes. We observed altered methylation and expression of 9 genes in epididymal adipocytes, including the known obesity-associated genes, Ehd2 and Kctd15, and a novel candidate gene, Irf8, possibly involved in immune type 1/type2 balance. The use of 2 obesity models enabled us to dissociate changes associated with high fat feeding from those associated with obesity per se. This information will be of value in future studies on the mechanisms governing the development of obesity and changes in adipocyte function associated with obesity.
Assuntos
Adipócitos/metabolismo , Obesidade/genética , Adipócitos/fisiologia , Tecido Adiposo/metabolismo , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Dieta , Dieta Hiperlipídica , Éxons , Expressão Gênica , Regulação da Expressão Gênica , Leptina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Regiões Promotoras GenéticasRESUMO
The content of the marine n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is far lower in lean than in fatty seafood. Cod filets contain less than 2g fat per kg, whereof approximately 50% is EPA and DHA. However, a large fraction of these n-3 PUFAs is present in the phospholipid (PL) fraction and may have high bioavailability and capacity to change the endocannabinoid profile. Here we investigated whether exchanging meat from a lean terrestrial animal with cod in a background Western diet would alter the endocannabinoid tone in mice and thereby attenuate obesity development and hepatic lipid accumulation. Accordingly, we prepared iso-caloric diets with 15.1 energy (e) % protein, 39.1 e% fat and 45.8 e% carbohydrates using freeze-dried meat from cod filets or pork sirloins, and using a combination of soybean oil, corn oil, margarine, milk fat, and lard as the fat source. Compared with mice receiving diets containing pork, mice fed cod gained less adipose tissue mass and had a lower content of hepatic lipids. This was accompanied by a lower n-6 to n-3 ratio in liver PLs and in red blood cells (RBCs) in the mice. Furthermore, mice receiving the cod-containing diet had lower circulating levels of the two major endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoylglycerol. Together, our data demonstrate that despite the relatively low content of n-3 PUFAs in cod fillets, the cod-containing diet could exert beneficial metabolic effects.
Assuntos
Dieta Ocidental/efeitos adversos , Gadus morhua , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/prevenção & controle , Alimentos Marinhos , Algoritmos , Animais , Ácidos Araquidônicos/sangue , Endocanabinoides/sangue , Eritrócitos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/sangue , Ácidos Graxos Ômega-6/metabolismo , Alimento Funcional , Glicerídeos/sangue , Fígado/patologia , Masculino , Carne , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosfolipídeos/metabolismo , Alcamidas Poli-InsaturadasRESUMO
The notion that the obesogenic potential of high fat diets in rodents is attenuated when the protein:carbohydrate ratio is increased is largely based on studies using casein or whey as the protein source. We fed C57BL/6J mice high fat-high protein diets using casein, soy, cod, beef, chicken or pork as protein sources. Casein stood out as the most efficient in preventing weight gain and accretion of adipose mass. By contrast, mice fed diets based on pork or chicken, and to a lesser extent mice fed cod or beef protein, had increased adipose tissue mass gain relative to casein fed mice. Decreasing the protein:carbohydrate ratio in diets with casein or pork as protein sources led to accentuated fat mass accumulation. Pork fed mice were more obese than casein fed mice, and relative to casein, the pork-based feed induced substantial accumulation of fat in classic interscapular brown adipose tissue accompanied by decreased UCP1 expression. Furthermore, intake of a low fat diet with casein, but not pork, as a protein source reversed diet-induced obesity. Compared to pork, casein seems unique in maintaining the classical brown morphology in interscapular brown adipose tissue with high UCP1 expression. This was accompanied by increased expression of genes involved in a futile cycling of fatty acids. Our results demonstrate that intake of high protein diets based on other protein sources may not have similar effects, and hence, the obesity protective effect of high protein diets is clearly modulated by protein source.
RESUMO
Accumulation of persistent organic pollutants (POPs) has been linked to adipose tissue expansion. As different nutrients modulate adipose tissue development, we investigated the influence of dietary composition on POP accumulation, obesity development and related disorders. Lifespan was determined in mice fed fish-oil-based high fat diets during a long-term feeding trial and accumulation of POPs was measured after 3, 6 and 18months of feeding. Further, we performed dose-response experiments using four abundant POPs found in marine sources, PCB-153, PCB-138, PCB-118 and pp'-DDE as single congeners or as mixtures in combination with different diets: one low fat diet and two high fat diets with different protein:sucrose ratios. We measured accumulation of POPs in adipose tissue and liver and determined obesity development, glucose tolerance, insulin sensitivity and hepatic expression of genes involved in metabolism of xenobiotics. Compared with mice fed diets with a low protein:sucrose ratio, mice fed diets with a high protein:sucrose ratio had significantly lower total burden of POPs in adipose tissue, were protected from obesity development and exhibited enhanced hepatic expression of genes involved in metabolism and elimination of xenobiotics. Exposure to POPs, either as single compounds or mixtures, had no effect on obesity development, glucose tolerance or insulin sensitivity. In conclusion, this study demonstrates that the dietary composition of macronutrients profoundly modulates POP accumulation in adipose tissues adding an additional parameter to be included in future studies. Our results indicate that alterations in macronutrient composition might be an additional route for reducing total body burden of POPs.
Assuntos
Tecido Adiposo/metabolismo , Dieta , Poluentes Ambientais/farmacocinética , Compostos Orgânicos/farmacocinética , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Plasma levels of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) are elevated in obesity and obesity-related disorders, such as steatosis, but the metabolic role of TIMP-1 is unclear. Here we investigated how the presence or absence of TIMP-1 affected the development of diet-induced glucose intolerance and hepatic steatosis using the Timp1 null mice. METHODS: Timp1 knockout (TKO) and wild type (TWT) mice were fed chow, high-fat diet (HFD) or intermediate fat and sucrose diet (IFSD). We determined body weight, body composition, lipid content of the liver, energy intake, energy expenditure, oral glucose tolerance, as well as insulin tolerance. In addition, the histology of liver and adipose tissues was examined and expression of selected genes involved in lipid metabolism and inflammation in liver and adipose tissues was determined by RT-qPCR. RESULTS: TKO mice gained less weight and had lower energy efficiency than TWT mice when fed HFD, but not when fed chow or IFSD. Importantly, TKO mice were protected from development of HFD- as well as IFSD-induced glucose intolerance, hepatic steatosis, and altered expression of genes involved in hepatic lipid metabolism and inflammation. CONCLUSION: Collectively, our results indicate that TIMP-1 contributes to the development of diet-induced hepatic steatosis and glucose intolerance and may be a potential therapeutic target.
Assuntos
Dieta Hiperlipídica , Fígado Gorduroso/etiologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Animais , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Camundongos , Camundongos Knockout , Aumento de PesoRESUMO
BACKGROUND: To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L.) are affected by the use of plant ingredients and a spillover effect on consumers is thus expected. Here we aimed to compare the effects of intake of Atlantic salmon fed fish oil (FO) with intake of Atlantic salmon fed a high proportion of vegetable oils (VOs) on development of insulin resistance and obesity in mice. METHODOLOGY/PRINCIPAL FINDINGS: Atlantic salmon were fed diets where FO was partly (80%) replaced with three different VOs; rapeseed oil (RO), olive oil (OO) or soy bean oil (SO). Fillets from Atlantic salmon were subsequently used to prepare Western diets (WD) for a mouse feeding trial. Partial replacement of FO with VOs reduced the levels of polychlorinated biphenyls (PCB) and dichloro-diphenyl-tricloroethanes (DDT) with more than 50% in salmon fillets, in WDs containing the fillets, and in white adipose tissue from mice consuming the WDs. Replacement with VOs, SO in particular, lowered the n-3 polyunsaturated fatty acid (PUFA) content and increased n-6 PUFA levels in the salmon fillets, in the prepared WDs, and in red blood cells collected from mice consuming the WDs. Replacing FO with VO did not influence obesity development in the mice, but replacement of FO with RO improved glucose tolerance. Compared with WD-FO fed mice, feeding mice WD-SO containing lower PCB and DDT levels but high levels of linoleic acid (LA), exaggerated insulin resistance and increased accumulation of fat in the liver. CONCLUSION/SIGNIFICANCE: Replacement of FO with VOs in aqua feed for farmed salmon had markedly different spillover effects on metabolism in mice. Our results suggest that the content of LA in VOs may be a matter of concern that warrants further investigation.