Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Biol Chem ; 293(17): 6374-6386, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29496995

RESUMO

Protein carbamylation by cyanate is a post-translational modification associated with several (patho)physiological conditions, including cardiovascular disorders. However, the biochemical pathways leading to protein carbamylation are incompletely characterized. This work demonstrates that the heme protein myeloperoxidase (MPO), which is secreted at high concentrations at inflammatory sites from stimulated neutrophils and monocytes, is able to catalyze the two-electron oxidation of cyanide to cyanate and promote the carbamylation of taurine, lysine, and low-density lipoproteins. We probed the role of cyanide as both electron donor and low-spin ligand by pre-steady-state and steady-state kinetic analyses and analyzed reaction products by MS. Moreover, we present two further pathways of carbamylation that involve reaction products of MPO, namely oxidation of cyanide by hypochlorous acid and reaction of thiocyanate with chloramines. Finally, using an in vivo approach with mice on a high-fat diet and carrying the human MPO gene, we found that during chronic exposure to cyanide, mimicking exposure to pollution and smoking, MPO promotes protein-bound accumulation of carbamyllysine (homocitrulline) in atheroma plaque, demonstrating a link between cyanide exposure and atheroma. In summary, our findings indicate that cyanide is a substrate for MPO and suggest an additional pathway for in vivo cyanate formation and protein carbamylation that involves MPO either directly or via its reaction products hypochlorous acid or chloramines. They also suggest that chronic cyanide exposure could promote the accumulation of carbamylated proteins in atherosclerotic plaques.


Assuntos
Cianatos , Cianetos , Peroxidase , Placa Aterosclerótica/enzimologia , Carbamilação de Proteínas , Animais , Citrulina/análogos & derivados , Citrulina/química , Citrulina/genética , Citrulina/metabolismo , Cianatos/química , Cianatos/metabolismo , Cianetos/química , Cianetos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Oxirredução , Peroxidase/química , Peroxidase/genética , Peroxidase/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia
2.
Mol Cell Biochem ; 429(1-2): 59-71, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28074342

RESUMO

Myeloperoxidase (MPO) is able to promote several kinds of damage and is involved in mechanisms leading to various diseases such as atherosclerosis or cancers. An example of these damages is the chlorination of nucleic acids, which is considered as a specific marker of the MPO activity. Since 5-chlorocytidine has been recently shown in healthy donor plasmas, this study aimed at discovering if these circulating modified nucleosides could be incorporated into RNA and DNA and if their presence impacts the ability of enzymes involved in the incorporation, transcription, and translation processes. Experimentations, which were carried out in vitro with endothelial and prostatic cells, showed a large penetration of all chloronucleosides but an exclusive incorporation of 5-chlorocytidine into RNA. However, no incorporation into DNA was observed. This specific incorporation is accompanied by an important reduction of translation yield. Although, in vitro, DNA polymerase processed in the presence of chloronucleosides but more slowly than in control conditions, ribonucleotide reductase could not reduce chloronucleotides prior to the replication. This reduction seems to be a limiting step, protecting DNA from chloronucleoside incorporation. This study shows the capacity of transcription enzyme to specifically incorporate 5-chlorocytidine into RNA and the loss of capacity-complete or partial-of different enzymes, involved in replication, transcription or translation, in the presence of chloronucleosides. Questions remain about the long-term impact of such specific incorporation in the RNA and such decrease of protein production on the cell viability and function.


Assuntos
Células Endoteliais/citologia , Líquido Extracelular/química , Nucleosídeos/química , Próstata/citologia , RNA/análise , Células Cultivadas , Cloro/química , Citidina/química , Halogenação , Humanos , Masculino , Nucleosídeos/sangue , Peroxidase/metabolismo , Biossíntese de Proteínas , RNA/química , Transcrição Gênica
3.
J Lipid Res ; 55(4): 747-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24534704

RESUMO

Oxidation of LDL by the myeloperoxidase (MPO)-H2O2-chloride system is a key event in the development of atherosclerosis. The present study aimed at investigating the interaction of MPO with native and modified LDL and at revealing posttranslational modifications on apoB-100 (the unique apolipoprotein of LDL) in vitro and in vivo. Using amperometry, we demonstrate that MPO activity increases up to 90% when it is adsorbed at the surface of LDL. This phenomenon is apparently reflected by local structural changes in MPO observed by circular dichroism. Using MS, we further analyzed in vitro modifications of apoB-100 by hypochlorous acid (HOCl) generated by the MPO-H2O2-chloride system or added as a reagent. A total of 97 peptides containing modified residues could be identified. Furthermore, differences were observed between LDL oxidized by reagent HOCl or HOCl generated by the MPO-H2O2-chloride system. Finally, LDL was isolated from patients with high cardiovascular risk to confirm that our in vitro findings are also relevant in vivo. We show that several HOCl-mediated modifications of apoB-100 identified in vitro were also present on LDL isolated from patients who have increased levels of plasma MPO and MPO-modified LDL. In conclusion, these data emphasize the specificity of MPO to oxidize LDL.


Assuntos
Apolipoproteína B-100/metabolismo , Lipoproteínas LDL/metabolismo , Peroxidase/metabolismo , Sequência de Aminoácidos , Apolipoproteína B-100/química , Estudos de Casos e Controles , Humanos , Peróxido de Hidrogênio/química , Hidrólise , Nefropatias/sangue , Nefropatias/terapia , Lipoproteínas LDL/química , Dados de Sequência Molecular , Oxirredução , Fragmentos de Peptídeos , Peroxidase/química , Processamento de Proteína Pós-Traducional , Diálise Renal
4.
Bioorg Med Chem ; 22(13): 3527-36, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24818960

RESUMO

Platinum-based drugs have been used for several decades to treat various cancers successfully. Cisplatin is the original compound in this class; it cross-links DNA, resulting in cell cycle arrest and cell death via apoptosis. Cisplatin is effective against several tumor types but exhibits toxic side effects; in addition, tumors often develop resistance. An original in vitro approach is proposed to determine whether platinum-based research compounds are good candidates for further study by comparing them to marketed drugs using FTIR spectroscopy and the COMPARE analysis from the NCI. Both methods can produce fingerprints and highlight differences between the compounds, classifying the candidates and revealing promising derivatives.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Compostos Organoplatínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Humanos , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 15(2): 2327-45, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24514562

RESUMO

Because propolis contains many types of antioxidant compounds such as polyphenols and flavonoids, it can be useful in preventing oxidative damages. Ethyl acetate extracts of propolis from several Algerian regions show high activity by scavenging free radicals, preventing lipid peroxidation and inhibiting myeloperoxidase (MPO). By fractioning and assaying ethyl acetate extracts, it was observed that both polyphenols and flavonoids contribute to these activities. A correlation was observed between the polyphenol content and the MPO inhibition. However, it seems that kaempferol, a flavonoid, contributes mainly to the MPO inhibition. This molecule is in a high amount in the ethyl acetate extract and demonstrates the best efficiency towards the enzyme with an inhibiting concentration at 50% of 4 ± 2 µM.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Própole/química , Ácido Ascórbico/química , Ativação Enzimática/efeitos dos fármacos , Flavonoides/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Concentração Inibidora 50 , Peroxidação de Lipídeos/efeitos dos fármacos , Extração Líquido-Líquido , Oxirredução/efeitos dos fármacos , Peroxidase/antagonistas & inibidores , Polifenóis/química
6.
J Cell Mol Med ; 16(7): 1421-34, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21810170

RESUMO

Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC(50) in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Cálcio/metabolismo , Citostáticos/farmacologia , Fosfotransferases/metabolismo , Polifenóis/farmacologia , Citoesqueleto de Actina/metabolismo , Animais , Apoptose , Cálcio/análise , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacologia , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Concentração Inibidora 50 , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Microscopia de Fluorescência , Microscopia de Vídeo , Mitose , Fosfotransferases/antagonistas & inibidores
7.
J Biol Chem ; 285(21): 16351-9, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20332087

RESUMO

The involvement of myeloperoxidase (MPO) in various inflammatory conditions has been the scope of many recent studies. Besides its well studied catalytic activity, the role of its overall structure and glycosylation pattern in biological function is barely known. Here, the N-glycan composition of native dimeric human MPO purified from neutrophils and of monomeric MPO recombinantly expressed in Chinese hamster ovary cells has been investigated. Analyses showed the presence of five N-glycans at positions 323, 355, 391, 483, 729 in both proteins. Site by site analysis demonstrated a well conserved micro- and macro-heterogeneity and more complex-type N-glycans for the recombinant form. Comparison of biological functionality of glycosylated and deglycosylated recombinant MPO suggests that glycosylation is required for optimal enzymatic activity. Data are discussed with regard to biosynthesis and the three-dimensional structure of MPO.


Assuntos
Neutrófilos/enzimologia , Peroxidase/química , Polissacarídeos/química , Multimerização Proteica , Animais , Células CHO , Cricetinae , Cricetulus , Glicosilação , Humanos , Peroxidase/genética , Peroxidase/metabolismo , Polissacarídeos/genética , Polissacarídeos/metabolismo , Estrutura Quaternária de Proteína , Proteínas Recombinantes
8.
Anal Biochem ; 411(1): 129-38, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21129357

RESUMO

Proteomic applications have been increasingly used to study posttranslational modifications of proteins (PTMs). For the purpose of identifying and localizing specific but unknown PTMs on huge proteins, improving their sequence coverage is fundamental. Using liquid chromatography coupled to mass spectrometry (LC-MS/MS), peptide mapping of the native apolipoprotein-B-100 was performed to further document the effects of oxidation. Apolipoprotein-B-100 is the main protein of low-density lipoprotein particles and its oxidation could play a role in atherogenesis. Because it is one of the largest human proteins, the sequence recovery rate of apolipoprotein-B-100 only reached 1% when conventional analysis parameters were used. The different steps of the peptide mapping process-from protein treatment to data analysis-were therefore reappraised and optimized. These optimizations allowed a protein sequence recovery rate of 79%, a rate which has never been achieved previously for such a large human protein. The key points for improving peptide mapping were optimization of the data analysis software; peptide separation by LC; sample preparation; and MS acquisition. The new protocol has allowed us to increase by a factor of 4 the detection of modified peptides in apolipoprotein-B-100. This approach could easily be transferred to any study of PTMs using LC-MS/MS.


Assuntos
Apolipoproteína B-100/química , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem/métodos , Alquilação , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida , Bases de Dados de Proteínas , Humanos , Dados de Sequência Molecular , Oxirredução , Peptídeos/química , Dobramento de Proteína , Reprodutibilidade dos Testes , Extração em Fase Sólida
9.
Bioorg Med Chem ; 18(11): 3823-33, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20466556

RESUMO

A series of 33 novel divanillates and trivanillates were synthesized and found to possess promising cytostatic rather than cytotoxic properties. Several compounds under study decreased by >50% the activity of Aurora A, B, and C, and WEE1 kinase activity at concentrations <10% of their IC(50) growth inhibitory ones, accounting, at least partly, for their cytostatic effects in cancer cells and to a lesser extent in normal cells. Compounds 6b and 13c represent interesting starting points for the development of cytostatic agents to combat cancers, which are naturally resistant to pro-apoptotic stimuli, including metastatic malignancies.


Assuntos
Citostáticos/síntese química , Neoplasias/tratamento farmacológico , Ácido Vanílico/síntese química , Apoptose/efeitos dos fármacos , Aurora Quinases , Proteínas de Ciclo Celular/antagonistas & inibidores , Citostáticos/farmacologia , Concentração Inibidora 50 , Neoplasias/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Relação Estrutura-Atividade , Ácido Vanílico/farmacologia , Ácido Vanílico/uso terapêutico
10.
Rev Port Cardiol ; 28(1): 37-47, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19388492

RESUMO

UNLABELLED: Experimental research indicates that oxidative processes play a role in susceptibility to a large number of diseases. A better understanding of the parameters affecting redox balance could delay and even prevent such processes. OBJECTIVE: The present study aims to investigate blood parameters associated with antioxidant systems in a Portuguese population for the first time, taking into consideration gender, age range, lipid profile and smoking habits as influencing factors. DESIGN AND PARTICIPANTS: One hundred and eighty-three healthy Portuguese subjects of both genders were recruited from the metropolitan area of Lisbon. The group consisted of individuals aged from 20 to 70 years, who gave their informed consent before participating in the study. All subjects were screened to determine eligibility, which was based on a clinical report. Subjects were considered eligible if they had no acute or chronic illness and were not taking any drugs or dietary supplements that could compromise the values of the studied parameters. The subjects were then divided into different subgroups according to gender, age range, lipid profile and smoking habits. METHODS: Whole blood glutathione peroxidase activity and serum albumin, transferrin and uric acid were determined using commercially available kits. Superoxide dismutase activity in erythrocytes and thiobarbituric acid reactive substances in serum were measured using methods published elsewhere. RESULTS: Glutathione peroxidase activity was not affected by any of the studied variables, but superoxide dismutase activity decreased with smoking. Albumin levels remained unchanged under all conditions. Hyperlipidemia was associated with higher lipid peroxidation as well as higher uric acid levels. Gender was the strongest predictor for transferrin, total iron binding capacity and uric acid variations. Finally, a multivariate statistical model clearly separated genders and lipid profile and genders and smoking. CONCLUSIONS: The present study suggests that hyperlipidemia and smoking should be considered important selection criteria in epidemiological studies focusing on oxidative stress and on the atherosclerotic process.


Assuntos
Dislipidemias/sangue , Fumar/sangue , Adulto , Idoso , Biomarcadores/sangue , Dislipidemias/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Fumar/metabolismo , Adulto Jovem
11.
Talanta ; 193: 206-214, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368292

RESUMO

Nucleotides play a role in inflammation processes: cAMP and cGMP in the endothelial barrier function, ADP in platelet aggregation, ATP and UTP in vasodilatation and/or vasoconstriction of blood vessels, UDP in macrophages activation. The aim of this study is to develop and validate a LC/MS-MS method able to quantify simultaneously nine nucleotides (AMP, cAMP, ADP, ATP, GMP, cGMP, UMP, UDP and UTP) in biological matrixes (cells and plasma). The method we developed, has lower LOQ's than others and has the main advantage to quantify all nucleotides within one single injection in less than 10 min. The measured nucleotides concentrations obtained with this method are similar to those obtained with assay kits commercially available. Analysis of plasma and red blood cells from healthy donors permits to estimate the physiological concentration of those nucleotides in human plasma and red blood cells, such information being poorly available in the literature. Furthermore, the protocol presented in this paper allowed us to observe that AMP, ADP, ATP concentrations are modified in human red blood cells and plasma after a venous stasis of 4 min compared to physiological blood circulation. Therefore, this specific method enables future studies on nucleotides implications in chronic inflammatory diseases but also in other pathologies where nucleotides are implicated in.


Assuntos
Cromatografia Líquida/métodos , Nucleotídeos/sangue , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Células Endoteliais/química , Eritrócitos/química , Humanos , Sensibilidade e Especificidade
12.
Bioorg Med Chem ; 16(4): 1702-20, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18063373

RESUMO

The development of myeloperoxidase (MPO) inhibitors has been conducted using flufenamic acid as a lead compound. Computational docking of the drug and its analogs in the MPO active site was first attempted. Several molecules were then synthesized and assessed using three procedures for the measurement of their inhibiting activity: (i) the taurine assay, (ii) the accumulation of compound II, and (iii) the LDL oxidation by ELISA. Most of the synthesized molecules had an activity in the same range as flufenamic acid but none of them were able to inhibit the MPO-dependent LDL oxidation. The experiments however gave some useful indications for a rational conception of MPO inhibitors.


Assuntos
Inibidores Enzimáticos/síntese química , Ácido Flufenâmico/análogos & derivados , Ácido Flufenâmico/farmacologia , Peroxidase/antagonistas & inibidores , Simulação por Computador , Humanos , Lipoproteínas LDL/análise , Estrutura Molecular , Peroxidase/metabolismo , Ligação Proteica
13.
Data Brief ; 18: 1160-1171, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900290

RESUMO

This article present data related to the publication entitled "Native and myeloperoxidase-oxidized low-density lipoproteins act in synergy to induce release of resolvin-D1 from endothelial cells" (Dufour et al., 2018). The supporting materials include results obtained by Mox-LDLs stimulated macrophages and investigation performed on scavenger receptors. Linear regressions (RvD1 vs age of mice and RvD1 vs CL-Tyr/Tyr) and Data related to validation were also presented. The interpretation of these data and further extensive insights can be found in Dufour et al. (2018) [1].

14.
Atherosclerosis ; 272: 108-117, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29597117

RESUMO

BACKGROUND AND AIMS: Oxidation of native low-density lipoproteins (LDLs-nat) plays an important role in the development of atherosclerosis. A major player in LDL-nat oxidation is myeloperoxidase (MPO), a heme enzyme present in azurophil granules of neutrophils and monocytes. MPO produces oxidized LDLs called Mox-LDLs, which cause a pro-inflammatory response in human microvascular endothelial cells (HMEC), monocyte/macrophage activation and formation of foam cells. Resolvin D1 (RvD1) is a compound derived from the metabolism of the polyunsaturated fatty acid DHA, which promotes resolution of inflammation at the ng/ml level. METHODS: In the present study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the synthesis of RvD1 and its precursors - 17(S)-hydroxy docosahexaenoic acid (17S-HDHA) and docosahexaenoic acid (DHA) - by HMEC, in the presence of several concentrations of Mox-LDLs, copper-oxidized-LDLs (Ox-LDLs), and native LDLs or in mouse plasma. The LC-MS/MS method has been validated and applied to cell supernatants and plasma to measure production of RvD1 and its precursors in several conditions. RESULTS: Mox-LDLs played a significant role in the synthesis of RvD1 and 17S-HDHA from DHA compared to Ox-LDLs. Moreover, Mox-LDLs and LDLs-nat acted in synergy to produce RvD1. In addition, different correlations were found between RvD1 and M1 macrophages, age of mice or Cl-Tyr/Tyr ratio. CONCLUSIONS: These results suggest that although Mox-LDLs are known to be pro-inflammatory and deleterious in the context of atherosclerosis, they are also able to induce a pro-resolution effect by induction of RvD1 from HMEC. Finally, our data also suggest that HMEC can produce RvD1 on their own.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Células Endoteliais/citologia , Lipoproteínas LDL/sangue , Peroxidase/metabolismo , Animais , Aterosclerose/metabolismo , Calibragem , Linhagem Celular , Cromatografia Líquida , Cobre , Humanos , Inflamação , Limite de Detecção , Lipídeos/sangue , Macrófagos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Eur J Pharmacol ; 570(1-3): 235-43, 2007 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-17610876

RESUMO

The present in vitro study was designed to assess the inhibition of the myeloperoxidase (MPO)/H(2)O(2)/Cl(-) system by several non steroidal anti-inflammatory drugs (NSAIDs) of the oxicam family and of nimesulide and to compare their effect with flufenamic acid in order to investigate their influence on the chlorinating activity of MPO as a protective mechanism during chronic inflammatory syndromes. The inhibition of the system was assessed by measurement of the taurine chlorination while the accumulation of compound II was used to investigate the mechanism of inhibition. The oxidation products of NSAIDs by the MPO/H(2)O(2)/Cl(-) system were identified and flufenamic acid and derivatives were also assessed in the inhibition of LDL oxidation in two models. Flufenamic acid (IC(50) = 1.1+/-0.3 microM) is the most efficient inhibitor of the MPO/H(2)O(2)/Cl(-) system and nimesulide (IC(50) = 2.1+/-0.3 microM) is more active than the other NSAIDs of the oxicam family (IC(50) = 8-12 microM). The accumulation of compound II revealed that flufenamic acid acts as an electron donor while the other NSAIDs are antagonists of chloride anions. The identification of the oxidation products confirms that flufenamic behaves like an electron donor and is directly oxidized in the 5-hydroxy-derivative but gives also the 5-chloro-derivative which similarly inhibits the MPO/H(2)O(2)/Cl(-) system. Flufenamic acid has the best inhibiting activity towards the MPO/H(2)O(2)/Cl(-) system. However, in models that assess the LDL oxidation, flufenamic acid and its derivatives were unable to properly inhibit MPO activity as the enzyme is adsorbed on macrostructures such as LDL molecules.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Ácido Flufenâmico/metabolismo , Peroxidase/antagonistas & inibidores , Linhagem Celular , Cloro/metabolismo , LDL-Colesterol/metabolismo , Células Endoteliais/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Ácido Hipocloroso/metabolismo , Oxirredução , Peroxidase/metabolismo , Proteínas Recombinantes/metabolismo
16.
ACS Med Chem Lett ; 8(2): 206-210, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28197313

RESUMO

The implementation of dynamic combinatorial libraries allowed the determination of highly active reversible and irreversible inhibitors of myeloperoxidase (MPO) at the nanomolar level. Docking experiments highlighted the interaction between the most active ligands and MPO, and further kinetic studies defined the mode of inhibition of these compounds. Finally, in vivo evaluation showed that one dose of irreversible inhibitors is able to suppress the activity of MPO after inducing inflammation.

17.
J Med Chem ; 60(15): 6563-6586, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28671460

RESUMO

The heme enzyme myeloperoxidase (MPO) participates in innate immune defense mechanism through formation of microbicidal reactive oxidants. However, evidence has emerged that MPO-derived oxidants contribute to propagation of inflammatory diseases. Because of the deleterious effects of circulating MPO, there is a great interest in the development of new efficient and specific inhibitors. Here, we have performed a novel virtual screening procedure, depending on ligand-based pharmacophore modeling followed by structure-based virtual screening. Starting from a set of 727842 compounds, 28 molecules were selected by this virtual method and tested on MPO in vitro. Twelve out of 28 compounds were found to have an IC50 less than 5 µM. The best inhibitors were 2-(7-methoxy-4-methylquinazolin-2-yl)guanidine (28) and (R)-2-(1-((2,3-dihydro-1H-imidazol-2-yl)methyl)pyrrolidin-3-yl)-5-fluoro-1H-benzo[d]imidazole (42) with IC50 values of 44 and 50 nM, respectively. Studies on the mechanism of inhibition suggest that 28 is the first potent mechanism-based inhibitor and inhibits irreversibly MPO at nanomolar concentration.


Assuntos
Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Peroxidase/antagonistas & inibidores , Quinazolinas/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/toxicidade , Linhagem Celular , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Ácido Glutâmico/química , Glutamina/química , Guanidinas/síntese química , Guanidinas/toxicidade , Humanos , Peróxido de Hidrogênio/química , Cinética , Lactoperoxidase/antagonistas & inibidores , Lipoproteínas LDL/química , Modelos Químicos , Simulação de Acoplamento Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Oxirredução , Quinazolinas/síntese química , Quinazolinas/toxicidade , Estereoisomerismo
18.
Eur J Pharmacol ; 537(1-3): 31-6, 2006 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16631159

RESUMO

The oxidative modification of low-density lipoproteins (LDL) is a key event in the formation of atheromatous lesions. Indeed, oxidized derivatives accumulate in the vascular wall and promote a local inflammatory process which triggers the progression of the atheromatous plaque. Myeloperoxidase (MPO) has been mentioned as a major contributor to this oxidative process. It takes part in the oxidation both of lipids by chlorination and peroxidation and of apolipoprotein B-100. Based on recent observations with several anti-inflammatory and thiol-containing drugs, the present study was designed to test the hypothesis that anti-hypertensive agents from the angiotensin converting enzyme (ACE) inhibitors group inhibit the oxidative modifications of Apo B-100 caused by MPO. Captopril, ramipril, enalapril, lisinopril and fosinopril were assessed by measuring: their inhibiting effect on the MPO/H(2)O(2)/Cl(-) system, the accumulation of compound II, which reflects the inhibition of the synthesis of HOCl and the LDL oxidation by MPO in presence of several concentrations of ACE inhibitors. Only captopril, a thiol-containing ACE inhibitor, was able to significantly decrease the oxidative modification of LDL in a dose dependent manner and this by scavenging HOCl. This efficient anti-hypertensive drug therefore appears to also protect against the atherosclerotic process by this newly documented mechanism.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Apolipoproteínas B/metabolismo , Captopril/farmacologia , Lipoproteínas LDL/metabolismo , Apolipoproteína B-100 , Aterosclerose/prevenção & controle , Enalapril/farmacologia , Fosinopril/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Ácido Hipocloroso/metabolismo , Lisinopril/farmacologia , Oxirredução , Peroxidase/metabolismo , Ramipril/farmacologia , Proteínas Recombinantes/metabolismo
19.
Talanta ; 154: 322-8, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27154681

RESUMO

Myeloperoxidase promotes several kinds of damage and is involved in the development of various diseases (as atherosclerosis and cancers). An example of these damage is the chlorination of nucleic acids, which is considered as a specific marker of the MPO activity on those acids. This study aimed to develop and validate a method to analyze oxidized and MPO-specific chlorinated nucleosides in biological matrixes (cells, tissues and plasma). Although a lot of methods to quantify oxidized or chlorinated nucleosides have already been established, none of them took into account all these derivatives together. The new method used a Triple Quadrupole mass spectrometer fitted with a Jet Stream electrospray ionization source. This approach has two advantages compared with existing LC/MSMS analyses: it includes MPO-induced modifications in a unique analysis and obtains a better sensitivity. Our optimized method reached LOQs of 1.50pg and 1.42pg respectively for oxoG and oxo(d)G, being 4 times more sensitive than previous methods, and LOQs of 1.39pg, 1.30pg and 63.4 fg respectively for 5-chlorocytidine, 5-chloro-2'-deoxycytidine and 8-chloroguanosine. Developed method is also 25 times more sensitive for chloroguanosine than the best existing method. Nevertheless, this method is not specific enough for 8-chloro-(2'-deoxy)adenosine analysis. Examples of applications demonstrate the interest of this validated method. Indeed analysis of plasma from healthy donors highlighted exclusively the presence of 5-chlorocytidine (1.0±0.2nM) whereas analysis of treated endothelial cells by HOCl showed chlorination of guanosine and cytidine in cytoplasmic pools and chlorination of (deoxy)cytidine in DNA and RNA. In conclusion, this study shows that 5-chloro-2'-deoxycytidine, 5-chlorocytidine and 8-chloroguanosine are good markers allowing us to detect the MPO activity in biological fluids. The robust, specific and sensitive developed method enables future studies on MPO implications in human diseases.


Assuntos
Espectrometria de Massas em Tandem , Cromatografia Líquida , Desoxicitidina/análogos & derivados , Guanosina/análogos & derivados , Peroxidase
20.
Eur J Med Chem ; 123: 746-762, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27537923

RESUMO

Human myeloperoxidase (MPO) plays an important role in innate immunity but also aggravates tissue damage by oxidation of biomolecules at sites of inflammation. As a result from a recent high-throughput virtual screening approach for MPO inhibitors, bis-2,2'-[(dihydro-1,3(2H,4H) pyrimidinediyl)bis(methylene)]phenol was detected as a promising lead compound for inhibition of the MPO-typical two-electron oxidation of chloride to hypochlorous acid (IC50 = 0.5 µM). In the present pharmacomodulation study, 37 derivatives of this lead compound were designed and synthesized driven by comprehensive docking studies and the impact on the chlorination activity of MPO. We describe the structural requirements for optimum (i) binding to the heme periphery and (ii) inhibition capacity. Finally, the best three inhibitors (bis-arylalkylamine derivatives) were probed for interaction with the MPO redox intermediates Compound I and Compound II. Determined apparent bimolecular rate constants together with determination of reduction potential and nucleophilicity of the selected compounds allowed us to propose a mechanism of inhibition. The best inhibitor was found to promote the accumulation of inactive form of MPO-Compound II and has IC50 = 54 nM, demonstrating the successful approach of the drug design. Due to the similarity of ligand interactions between MPO and serotonine transporter, the selectivity of this inhibitor was also tested on the serotonin transporter providing a selectivity index of 14 (KiSERT/IC50MPO).


Assuntos
Aminas/síntese química , Aminas/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Peroxidase/antagonistas & inibidores , Aminas/química , Aminas/metabolismo , Técnicas de Química Sintética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Halogenação , Humanos , Cinética , Simulação de Acoplamento Molecular , Oxirredução , Peroxidase/química , Peroxidase/metabolismo , Conformação Proteica , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA