Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 282, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778340

RESUMO

Extracellular vesicles (EVs) constitute a vital component of intercellular communication, exerting significant influence on metastasis formation and drug resistance mechanisms. Malignant melanoma (MM) is one of the deadliest forms of skin cancers, because of its high metastatic potential and often acquired resistance to oncotherapies. The prevalence of BRAF mutations in MM underscores the importance of BRAF-targeted therapies, such as vemurafenib and dabrafenib, alone or in combination with the MEK inhibitor, trametinib. This study aimed to elucidate the involvement of EVs in MM progression and ascertain whether EV-mediated metastasis promotion persists during single agent BRAF (vemurafenib, dabrafenib), or MEK (trametinib) and combined BRAF/MEK (dabrafenib/trametinib) inhibition.Using five pairs of syngeneic melanoma cell lines, we assessed the impact of EVs - isolated from their respective supernatants - on melanoma cell proliferation and migration. Cell viability and spheroid growth assays were employed to evaluate proliferation, while migration was analyzed through mean squared displacement (MSD) and total traveled distance (TTD) measurements derived from video microscopy and single-cell tracking.Our results indicate that while EV treatments had remarkable promoting effect on cell migration, they exerted only a modest effect on cell proliferation and spheroid growth. Notably, EVs demonstrated the ability to mitigate the inhibitory effects of BRAF inhibitors, albeit they were ineffective against a MEK inhibitor and the combination of BRAF/MEK inhibitors. In summary, our findings contribute to the understanding of the intricate role played by EVs in tumor progression, metastasis, and drug resistance in MM.


Assuntos
Movimento Celular , Vesículas Extracelulares , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Melanoma/patologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Humanos , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Vemurafenib/farmacologia , Pirimidinonas/farmacologia , Piridonas/farmacologia , Piridonas/uso terapêutico , Imidazóis/farmacologia , Oximas/farmacologia
2.
FASEB J ; 36(11): e22584, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36190314

RESUMO

ARHGAP25, a RAC-specific GTPase activating protein (GAP), is an essential regulator of phagocyte effector functions such as phagocytosis, superoxide production, and transendothelial migration. Furthermore, its complex role in tumor behavior has recently been recognized. We previously demonstrated that phosphorylation of serine 363 in ARHGAP25 regulates hematopoietic stem cells and progenitor cells in mouse bone marrow. However, the significance of other potential phosphorylation sites of ARHGAP25 remained unknown. Now, we developed a novel, real-time bioluminescence resonance energy transfer (BRET) assay to monitor the GAP activity of ARHGAP25 in vitro. Using this approach, we revealed that phosphorylation of S363 and S488, but not that of S379-380, controls ARHGAP25's RACGAP activity. On the other hand, we found in granulocyte-differentiated human PLB-985 cells that superoxide production and actin depolymerization are regulated by residues S363 and S379-380. The present data demonstrate the value of our BRET-GAP assay and show that different phosphorylation patterns regulate ARHGAP25's GAP activity and its effect on superoxide production and phagocytosis.


Assuntos
Proteínas Ativadoras de GTPase , Superóxidos , Animais , Transferência de Energia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Fosforilação , Serina/metabolismo , Superóxidos/metabolismo
3.
Pathol Oncol Res ; 26(3): 1957-1969, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31902117

RESUMO

Bisphosphonates, despite proven antitumor effect in vitro in many tumor types, are currently used only for treatment of osteoporosis and bone metastasis. Colorectal cancer is the third most commonly diagnosed type of cancer and lacks targeted therapy for RAS or RAF mutation carrying cases. A new lipophilic bisphosphonate showed promising results in lung cancer models, but their effect on colorectal cancer cells was not investigated excessively. Antitumor effects and impact on RAS-related signalization of zoledronic acid (ZA) and a lipophilic bisphosphonate (BPH1222) were investigated on 7 human colorectal cancer cell lines in vitro and in vivo. Furthermore, mutant KRAS dependent effect of prenylation inhibition was investigated using isogeneic cell lines. Both bisphosphonates reduced cell viability in vitro in a dose-dependent manner. Both compounds changed cell cycle distribution similarly by increasing the proportion of cells either in the S or in the subG1 phase or both. However, BPH1222 exerted higher inhibitory effect on spheroid growth than ZA. Interestingly, we found profound alterations in phosphorylation level of Erk and S6 proteins upon ZA or BPH1222 treatment. Furthermore, investigation of a mutant KRAS isogeneic model system suggests that the drugs interfere also with the mutant KRAS proteins. In vivo experiments with KRAS mutant xenograft model also revealed growth inhibitory potential of bisphosphonate treatment. Our results show that lipophilic bisphosphonates might extend the therapeutic spectrum of bisphosphonate drugs and could be considered as additional treatment approaches in colorectal cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/patologia , Difosfonatos/farmacologia , Ácido Zoledrônico/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA