Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(14): 3449-3468, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822814

RESUMO

The present study examined and compared the impact of exercise training on redox and molecular properties of human microvascular endothelial cells derived from skeletal muscle biopsies from sedentary recent (RPF, ≤ 5 years as postmenopausal) and late (LPF, ≥ 10 years as postmenopausal) postmenopausal females. Resting skeletal muscle biopsies were obtained before and after 8 weeks of intense aerobic exercise training for isolation of microvascular endothelial cells and determination of skeletal muscle angiogenic proteins and capillarisation. The microvascular endothelial cells were analysed for mitochondrial respiration and production of reactive oxygen species (ROS), glycolysis and proteins related to vascular function, redox balance and oestrogen receptors. Exercise training led to a reduced endothelial cell ROS formation (∼50%; P = 0.009 and P = 0.020 for intact and permeabilized cells (state 3), respectively) in RPF only, with no effect on endothelial mitochondrial capacity in either group. Basal endothelial cell lactate formation was higher (7%; P = 0.028), indicating increased glycolysis, after compared to before the exercise training period in RPF only. Baseline endothelial G protein-coupled oestrogen receptor (P = 0.028) and muscle capillarisation (P = 0.028) was lower in LPF than in RPF. Muscle vascular endothelial growth factor protein was higher (32%; P = 0.002) following exercise training in LPF only. Exercise training did not influence endothelial cell proliferation or skeletal muscle capillarisation in either group, but the CD31 level in the muscle tissue, indicating endothelial cell content, was higher (>50%; P < 0.05) in both groups. In conclusion, 8 weeks of intense aerobic exercise training reduces ROS formation and enhances glycolysis in microvascular endothelial cells from RPF but does not induce skeletal muscle angiogenesis. KEY POINTS: Late postmenopausal females have been reported to achieve limited vascular adaptations to exercise training. There is a paucity of data on the effect of exercise training on isolated skeletal muscle microvascular endothelial cells (MMECs). In this study the formation of reactive oxygen species in MMECs was reduced and glycolysis increased after 8 weeks of aerobic exercise training in recent but not late postmenopausal females. Late postmenopausal females had lower levels of G protein-coupled oestrogen receptor in MMECs and lower skeletal muscle capillary density at baseline. Eight weeks of intense exercise training altered MMEC properties but did not induce skeletal muscle angiogenesis in postmenopausal females.


Assuntos
Células Endoteliais , Exercício Físico , Músculo Esquelético , Pós-Menopausa , Espécies Reativas de Oxigênio , Humanos , Feminino , Pós-Menopausa/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Células Endoteliais/fisiologia , Células Endoteliais/metabolismo , Exercício Físico/fisiologia , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Microvasos/fisiologia , Microvasos/citologia , Glicólise/fisiologia , Idoso , Receptores de Estrogênio/metabolismo
2.
Thromb J ; 22(1): 35, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581046

RESUMO

INTRODUCTION: Older individuals and, in particular, individuals at risk of recurrent stroke, may be susceptible to thrombosis when participating in exercise, however, this aspect has not been well investigated. METHODS: Clot microstructure and conventional markers of thrombotic risk were determined in twenty lacunar stroke patients and fifteen healthy age-matched controls before, immediately after and 1 h after a bout of moderate intensity cycling exercise. Data were analyzed using a linear mixed model approach. RESULTS: At rest, clot microstructure (1.69 ± 0.07 vs. 1.64 ± 0.05, corresponding to a difference of ~ 50% in normalized clot mass; p = 0.009) and thrombocyte count (73%; p < 0.0001) were higher, and activated partial thromboplastin time was lower (18%; p = 0.0001) in stroke patients compared to age-matched controls. Acute exercise increased thrombogenic markers similarly in the two groups: incipient clot microstructure (1.69 ± 0.07 vs. 1.74 ± 0.05; p = 0.0004 and 1.64 ± 0.05 vs. 1.71 ± 0.04; p < 0.0001, for stroke and controls respectively), plasma fibrinogen (12%; p < 0.0001 and 18%; p < 0.0001, for stroke and controls respectively) and the combined coagulation factors II, VII and X (p = 0.0001 and p < 0.0001, for stroke and controls respectively). CONCLUSION: The results show that exercise transiently increases the risk of blood clot formation in both stroke patients and controls, however, due to the higher baseline thrombogenicity in stroke patients, the post exercise risk of forming blood clots may be higher in this group. TRIAL REGISTRATION: Registered at ClinicalTrials.gov (NCT03635177).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA