Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Fish Shellfish Immunol ; 151: 109692, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876411

RESUMO

The fish's immune response is affected by different factors, including a wide range of environmental conditions that can also disrupt or promote changes in the host-pathogen interactions. How environmental conditions modulate the salmon genome during parasitism is poorly understood here. This study aimed to explore the environmental influence on the Salmo salar transcriptome and methylome infected with the sea louse Caligus rogercresseyi. Atlantic salmon were experimentally infected with lice at two temperatures (8 and 16 °C) and salinity conditions (32 and 26PSU). Fish tissues were collected from the infected Atlantic salmon for reduced representation bisulfite sequencing (RRBS) and whole transcriptome sequencing (RNA-seq) analysis. The parasitic load was highly divergent in the evaluated environmental conditions, where the lowest lice abundance was observed in fish infected at 8 °C/26PSU. Notably, transcriptome profile differences were statistically associated with the number of alternative splicing events in fish exposed to low temperature/salinity conditions. Furthermore, the temperature significantly affected the methylation level, where high values of differential methylation regions were observed at 16 °C. Also, the association between expression levels of spliced transcripts and their methylation levels was determined, revealing significant correlations with Ferroptosis and TLR KEEG pathways. This study supports the relevance of the environmental conditions during host-parasite interactions in marine ecosystems. The discovery of alternative splicing transcripts associated with DMRs is also discussed as a novel player in fish biology.


Assuntos
Copépodes , Ectoparasitoses , Doenças dos Peixes , Salmo salar , Transcriptoma , Animais , Salmo salar/genética , Salmo salar/imunologia , Copépodes/fisiologia , Copépodes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/parasitologia , Ectoparasitoses/veterinária , Ectoparasitoses/imunologia , Ectoparasitoses/genética , Ectoparasitoses/parasitologia , Salinidade , Temperatura , Epigenoma , Metilação de DNA
2.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362121

RESUMO

Caligus rogercresseyi is the main ectoparasite that affects the salmon industry in Chile. The mechanisms used by the parasite to support its life strategy are of great interest for developing control strategies. Due to the critical role of insect peritrophins in host-parasite interactions and response to pest control drugs, this study aimed to identify and characterize the peritrophin-like genes present in C. rogercresseyi. Moreover, the expression of peritrophin-like genes was evaluated on parasites exposed to delousing drugs such as pyrethroids and azamethiphos. Peritrophin genes were identified by homology analysis among the sea louse transcriptome database and arthropods peritrophin-protein database obtained from GenBank and UniProt. Moreover, the gene loci in the parasite genome were located. Furthermore, peritrophin gene expression levels were evaluated by RNA-Seq analysis in sea louse developmental stages and sea lice exposed to delousing drugs deltamethrin, cypermethrin, and azamethiphos. Seven putative peritrophin-like genes were identified in C. rogercresseyi with high homology with other crustacean peritrophins. Differences in the presence of signal peptides, the number of chitin-binding domains, and the position of conserved cysteines were found. In addition, seven peritrophin-like gene sequences were identified in the C. rogercresseyi genome. Gene expression analysis revealed a stage-dependent expression profile. Notably, differential regulation of peritrophin genes in resistant and susceptible populations to delousing drugs was found. These data are the first report and characterization of peritrophin genes in the sea louse C. rogercresseyi, representing valuable knowledge to understand sea louse biology. Moreover, this study provides evidence for a deeper understanding of the molecular basis of C. rogercresseyi response to delousing drugs.


Assuntos
Copépodes , Doenças dos Peixes , Ftirápteros , Animais , Copépodes/genética , Organotiofosfatos , Salmão , Doenças dos Peixes/parasitologia
3.
Fish Shellfish Immunol ; 117: 169-178, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34389379

RESUMO

It is known that iron transporter proteins and their regulation can modulate the fish's immune system, suggesting these proteins as a potential candidate for fish vaccines. Previous studies have evidenced the effects of Atlantic salmon immunized with the chimeric iron-related protein named IPath® against bacterial and ectoparasitic infections. The present study aimed to explore the transcriptome modulation and the morphology of the sea louse Caligus rogercresseyi in response to Atlantic salmon injected with IPath®. Herein, Atlantic salmon were injected with IPath® and challenged to sea lice in controlled laboratory conditions. Then, female adults were collected after 25 days post-infection for molecular and morphological evaluation. Transcriptome analysis conducted in lice collected from immunized fish revealed high modulation of transcripts compared with the control groups. Notably, the low number of up/downregulated transcripts was mainly found in lice exposed to the IPath® fish group. Among the top-25 differentially expressed genes, Vitellogenin, Cytochrome oxidases, and proteases genes were strongly downregulated, suggesting that IPath® can alter lipid transport, hydrogen ion transmembrane transport, and proteolysis. The morphological analysis in lice collected from IPath® fish revealed abnormal embryogenesis and inflammatory processes of the genital segment. Furthermore, head kidney, spleen, and skin were also analyzed in immunized fish to evaluate the transcription expression of immune and iron homeostasis-related genes. The results showed downregulation of TLR22, MCHII, IL-1ß, ALAs, HO, BLVr, GSHPx, and Ferritin genes in head kidney and skin tissues; meanwhile, those genes did not show significant differences in spleen tissue. Overall, our findings suggest that IPath® can be used to enhance the fish immune response, showing a promissory commercial application against lice infections.


Assuntos
Copépodes/genética , Ectoparasitoses/prevenção & controle , Doenças dos Peixes/prevenção & controle , Proteínas Recombinantes/administração & dosagem , Salmo salar/parasitologia , Transcriptoma , Vacinas/administração & dosagem , Animais , Ectoparasitoses/veterinária , Feminino , Ferritinas/genética , Salmo salar/imunologia , Transferrina/genética , Vacinação
4.
Fish Shellfish Immunol ; 90: 199-209, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31048036

RESUMO

The study of host-parasite relationships is an integral part of the immunology of aquatic species, where the complexity of both organisms has to be overlayed with the lifecycle stages of the parasite and immunological status of the host. A deep understanding of how the parasite survives in its host and how they display molecular mechanisms to face the immune system can be applied for novel parasite control strategies. This review highlights current knowledge about salmon and sea louse, two key aquatic animals for aquaculture research worldwide. With the aim to catch the complexity of the salmon-louse interactions, molecular information gleaned through genomic studies are presented. The host recognition system and the chemosensory receptors found in sea lice reveal complex molecular components, that in turn, can be disrupted through specific molecules such as non-coding RNAs.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Salmão , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Aquicultura , Quimiotaxia/imunologia , Copépodes/genética , Copépodes/imunologia , Copépodes/microbiologia , Ectoparasitoses/parasitologia , Ectoparasitoses/fisiopatologia , Doenças dos Peixes/fisiopatologia , Imunidade Inata/fisiologia , Microbiota/fisiologia , Salmão/imunologia , Salmão/microbiologia , Salmão/fisiologia
5.
Int J Mol Sci ; 17(6)2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27258252

RESUMO

Scientific efforts to elucidate the mechanisms of chemical communication between organisms in marine environments are increasing. This study applied novel molecular technology to outline the effects of two xenobiotic drugs, deltamethrin (DM) and azamethiphos (AZA), on the neurotransmission system of the copepod ectoparasite Caligus rogercresseyi. Transcriptome sequencing and bioinformatics analyses were conducted to evaluate treatment effects on the glutamatergic synaptic pathway of the parasite, which is closely related to chemoreception and neurotransmission. After drug treatment with DM or AZA, stochastic mRNA expression patterns of glutamatergic synapse pathway components were observed. Both DM and AZA promoted a down-regulation of the glutamate-ammonia ligase, and DM activated a metabotropic glutamate receptor that is a suggested inhibitor of neurotransmission. Furthermore, the delousing drugs drove complex rearrangements in the distribution of mapped reads for specific metabotropic glutamate receptor domains. This study introduces a novel methodological approach that produces high-quality results from transcriptomic data. Using this approach, DM and AZA were found to alter the expression of numerous mRNAs tightly linked to the glutamatergic signaling pathway. These data suggest possible new targets for xenobiotic drugs that play key roles in the delousing effects of antiparasitics in sea lice.


Assuntos
Copépodes/genética , Perfilação da Expressão Gênica/métodos , Glutamato-Amônia Ligase/genética , Praguicidas/farmacologia , Receptores de Glutamato Metabotrópico/genética , Análise de Sequência de RNA/métodos , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Copépodes/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Nitrilas/farmacologia , Organotiofosfatos/farmacologia , Piretrinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
6.
Fish Shellfish Immunol ; 47(1): 450-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26363235

RESUMO

One of the most significant threats to the Chilean salmon aquaculture industry is the ectoparasitic sea louse Caligus rogercresseyi. To cope with sea lice infestations, functional diets have become an important component in strengthening the host immune response. The aim of this study was to evaluate molecular mechanisms activated through immunostimulation by in-feed plant-derived additives in Atlantic salmon infected with sea lice. Herein, a transcriptome-wide sequencing analysis was performed from skin and head kidney tissues, evidencing that the immune response genes were the most variable after the challenge, especially in the head kidney, while other genes involved in metabolism were highly expressed individuals fed with the immunostimulants. Interestingly, defensive enzymes such as Cytochrome p450 and serpins were down-regulated in infested individuals, especially in skin tissue. Additionally, MHC-I and MHC-II genes were differentially expressed after the incorporation of the in-feed additives, giving some cues about the protection mechanisms of plant-derived compound as immunostimulants for infested salmons. This is the first published study that evaluates the transcriptomic response of sea lice-infested Atlantic salmon fed with in-feed additives.


Assuntos
Adjuvantes Imunológicos/farmacologia , Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/imunologia , Imunomodulação , Salmo salar , Adjuvantes Imunológicos/administração & dosagem , Ração Animal/análise , Animais , Chile , Dieta/veterinária , Suplementos Nutricionais/análise , Ectoparasitoses/genética , Ectoparasitoses/imunologia , Ectoparasitoses/parasitologia , Doenças dos Peixes/genética , Doenças dos Peixes/parasitologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Rim Cefálico/parasitologia , Imunidade Inata , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Pele/parasitologia
7.
Int J Mol Sci ; 16(7): 15235-50, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26154765

RESUMO

Saxitoxin (STX) is a neurotoxin produced by dinoflagellates in diverse species, such as Alexandrium spp., and it causes paralytic shellfish poisoning (PSP) in humans after the ingestion of contaminated shellfish. Recent studies have suggested that the immune functions of bivalves could be affected by harmful algae and/or by their toxins. Herein, hemocytes are the main effector cells of the immune cellular response. In this study, we evaluated the response of hemocytes from the mussel Mytilus chilensis to STX exposure in a primary culture. Cell cultures were characterized according to size and complexity, while reactive oxygen species (ROS) production was evaluated using a dichlorofluorescein diacetate (DCFH-DA) assay. Finally, phagocytic activity was measured using both flow cytometry and fluorescence microscopy assays. Additionally, gene transcription of candidate genes was evaluated by qPCR assays. The results evidenced that exposures to different concentrations of STX (1-100 nM) for 24 h did not affect cell viability, as determined by an MTT assay. However, when hemocytes were exposed for 4 or 16 h to STX (1-100 nM), there was a modulation of phagocytic activity and ROS production. Moreover, hemocytes exposed to 100 nM of STX for 4 or 16 h showed a significant increase in transcript levels of genes encoding for antioxidant enzymes (SOD, CAT), mitochondrial enzymes (COI, COIII, CYTB, ATP6, ND1) and ion channels (K+, Ca2+). Meanwhile, C-type lectin and toll-like receptor genes revealed a bi-phase transcriptional response after 16 and 24-48 h of exposure to STX. These results suggest that STX can negatively affect the immunocompetence of M. chilensis hemocytes, which were capable of responding to STX exposure in vitro by increasing the mRNA levels of antioxidant enzymes.


Assuntos
Hemócitos/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Fagocitose , Venenos/farmacologia , Saxitoxina/farmacologia , Transcriptoma , Animais , Hemócitos/imunologia , Hemócitos/metabolismo , Mytilus/imunologia , Mytilus/metabolismo , Estresse Oxidativo , Venenos/toxicidade , Saxitoxina/toxicidade , Transcrição Gênica
8.
Exp Parasitol ; 145: 99-109, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25131775

RESUMO

Although various elements of the olfactory system have been elucidated in insects, it remains practically unstudied in crustaceans at a molecular level. Among crustaceans, some species are classified as ectoparasites that impact the finfish aquaculture industry. Thus, there is an urgent need to identify and comprehend the signaling pathways used by these in host recognition. The present study, through RNA-seq and qPCR analyses, found novel transcripts involved in the olfactory system of Caligus rogercresseyi, in addition to the transcriptomic patterns expressed during different stages of salmon lice development. From a transcriptomic library generated by Illumina sequencing, contigs that annotated for ionotropic receptors and other genes implicated in the olfactory system were identified and extracted. Full length mRNA was obtained for the ionotropic glutamate receptor 25, which had 3923 bp, and for the glutamate receptor ionotropic kainate 2, which had 2737 bp. Furthermore, two other transcripts identified as glutamate receptor, ionotropic kainate 2-like were found. In silico analysis was performed for the transcription expression from different stages of development in C. rogercresseyi, and clusters according to RPKM values were constructed. Gene transcription data were validated through qPCR assays in ionotropic receptors, and showed an expression of glutamate receptor 25 associated with the copepodid stage whereas adults, especially male adults, were associated with the kainate 2 and kainate 2-like transcripts. Additionally, gene transcription analysis of the ionotropic receptors showed an overexpression in response to the presence of masking compounds and immunostimulant in salmon diets. This response correlated to a reduction in sea lice infection following in vivo challenge. Diets with masking compounds showed a decrease of lice infestation of up to 25%. This work contributes to the available knowledge on chemosensory systems in this ectoparasite, providing novel elements towards understanding the host-finding process of the salmon louse C. rogercresseyi.


Assuntos
Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Salmonidae/parasitologia , Transcrição Gênica , Animais , Sequência de Bases , Copépodes/anatomia & histologia , Copépodes/genética , Ectoparasitoses/parasitologia , Feminino , Regulação da Expressão Gênica , Masculino , Dados de Sequência Molecular , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/anatomia & histologia , Neurônios Receptores Olfatórios/fisiologia , Reação em Cadeia da Polimerase , RNA Mensageiro/química , RNA Mensageiro/genética , Receptores de Ácido Caínico/genética , Alinhamento de Sequência , Olfato/genética , Transcrição Gênica/genética , Transcriptoma/genética
9.
Fish Shellfish Immunol ; 35(6): 1899-905, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080470

RESUMO

Single nucleotide polymorphisms (SNPs) identified in coding regions represent a useful tool for understanding the immune response against pathogens and stressful environmental conditions. In this study, a SNPs database was generated from transcripts involved in the innate immune response of the mussel Mytilus chilensis. The SNPs were identified through hemocytes transcriptome sequencing from 18 individuals, and SNPs mining was performed in 225,336 contigs, yielding 20,306 polymorphisms associated to immune-related genes. Classification of identified SNPs was based on different pathways of the immune response for Mytilus sp. A total of 28 SNPs were identified in the Toll-like receptor pathway and included 5 non-synonymous polymorphisms; 19 SNPs were identified in the apoptosis pathway and included 3 non-synonymous polymorphisms; 35 SNPs were identified in the Ubiquitin-mediated proteolysis pathway and included 4 non-synonymous variants; and 54 SNPs involved in other molecular functions related to the immune response, such as molecular chaperones, antimicrobial peptides, and genes that interacts with marine toxins were also identified. The molecular markers identified in this work could be useful for novel studies, such as those related to associations between high-resolution molecular markers and functional response to pathogen agents.


Assuntos
Hemócitos/metabolismo , Imunidade Inata , Mytilus/genética , Mytilus/imunologia , Polimorfismo de Nucleotídeo Único , Animais , Chile , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Análise de Sequência de DNA
10.
Fish Shellfish Immunol ; 34(6): 1448-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23528874

RESUMO

This study reports two kazal-type serine protease inhibitors (KPI) identified in a cDNA library from the surf clam Mesodesma donacium, and characterized through Rapid Amplification of cDNA Ends (RACE). The KPIs, denoted as MdSPI-1 and MdSPI-2, presented full sequences of 1139 bp and 781 bp respectively. MdSPI-1 had a 5'untranslated region (UTR) of 175 bp, a 3'UTR of 283 bp and an open reading frame (ORF) of 681 pb that encodes for 227 amino acids. MdSPI-2 showed a 5'UTR of 70 bp, a 3'UTR of 279 bp and an ORF of 432 bp that encodes for 144 amino acids. Both sequences presented two kazal-type tandem domains. Phylogenetic analysis of MdSPI-1 and MdSPI-2 shows a main clade composed by other bivalve species and closely related crustaceans. Real time PCR analysis showed that MdSPI-1 is mainly up-regulated in mantle, foot, gills and muscle tissues, while MdSPI-2 is expressed principally in foot tissue. Moreover, to evaluate the immune response of MdSPI-1 and MdSPI-2, infections with Vibrio anguillarum were performed. Herein, MdSPI-1 and MdSPI-2 transcription expression were significantly up-regulated at 2 and 8 h post-challenge. Our results suggest that MdSPI-1 and MdSPI-2 are important humoral factors of innate immunity in M. donacium.


Assuntos
Bivalves/genética , Bivalves/metabolismo , Inibidores de Serina Proteinase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Bivalves/imunologia , Bivalves/microbiologia , Chile , Clonagem Molecular , Regulação da Expressão Gênica , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Vibrio/fisiologia
11.
Fish Shellfish Immunol ; 35(3): 910-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23838046

RESUMO

Ferritin has been identified as the principal protein of iron storage and iron detoxification, playing a pivotal role for the cellular homeostasis in living organisms. However, recent studies in marine invertebrates have suggested its association with innate immune system. In the present study, one Ferritin subunit was identified from the gastropod Concholepas concholepas (CcFer), which was fully characterized by Rapid Amplification of cDNA Ends technique. Simultaneously, a challenge test was performed to evaluate the immune response against Vibrio anguillarum. The full length of cDNA Ccfer was 1030 bp, containing 513 bp of open reading frame that encodes to 170 amino acid peptide, which was similar to the Ferritin H subunit described in vertebrates. Untranslated Regions (UTRs) were identified with a 5'UTR of 244 bp that contains iron responsive element (IRE), and a 3'UTR of 273 bp. The predicted molecular mass of deduced amino acid of CcFer was 19.66 kDa and isoelectric point of 4.92. Gene transcription analysis revealed that CcFer increases against infections with V. anguillarum, showing a peak expression at 6 h post-infection. Moreover, a single nucleotide polymorphism was detected at -64 downstream 5'UTR sequence (SNP-64). Quantitative real time analysis showed that homozygous mutant allele (TT) was significantly associated with higher expression levels of the challenged group compared to wild (CC) and heterozygous (CT) variants. Our findings suggest that CcFer is associated to innate immune response in C. concholepas and that the presence of SNPs may involve differential transcriptional expression of CcFer.


Assuntos
Apoferritinas/metabolismo , Gastrópodes/genética , Gastrópodes/metabolismo , Imunidade Inata , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Animais , Apoferritinas/genética , Sequência de Bases , Regulação da Expressão Gênica/imunologia , Genótipo , Dados de Sequência Molecular , Filogenia
12.
Genes (Basel) ; 14(5)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37239346

RESUMO

Salmon aquaculture is constantly threatened by pathogens that impact fish health, welfare, and productivity, including the sea louse Caligus rogercresseyi. This marine ectoparasite is mainly controlled through delousing drug treatments that have lost efficacy. Therein, strategies such as salmon breeding selection represent a sustainable alternative to produce fish with resistance to sea lice. This study explored the whole-transcriptome changes in Atlantic salmon families with contrasting resistance phenotypes against lice infestation. In total, 121 Atlantic salmon families were challenged with 35 copepodites per fish and ranked after 14 infestation days. Skin and head kidney tissue from the top two lowest (R) and highest (S) infested families were sequenced by the Illumina platform. Genome-scale transcriptome analysis showed different expression profiles between the phenotypes. Significant differences in chromosome modulation between the R and S families were observed in skin tissue. Notably, the upregulation of genes associated with tissue repairs, such as collagen and myosin, was found in R families. Furthermore, skin tissue of resistant families showed the highest number of genes associated with molecular functions such as ion binding, transferase, and cytokine activity, compared with the susceptible. Interestingly, lncRNAs differentially modulated in the R/S families are located near genes associated with immune response, which are upregulated in the R family. Finally, SNPs variations were identified in both salmon families, where the resistant ones showed the highest number of SNPs variations. Remarkably, among the genes with SPNs, genes associated with the tissue repair process were identified. This study reported Atlantic salmon chromosome regions exclusively expressed in R or S Atlantic salmon families' phenotypes. Furthermore, due to the presence of SNPs and high expression of tissue repair genes in the resistant families, it is possible to suggest mucosal immune activation associated with the Atlantic salmon resistance to sea louse infestation.


Assuntos
Infestações por Piolhos , Salmo salar , Animais , Transcriptoma/genética , Salmo salar/genética , Pele/parasitologia , Fenótipo
13.
Genes (Basel) ; 14(4)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37107634

RESUMO

The blue mussel Mytilus chilensis is an endemic and key socioeconomic species inhabiting the southern coast of Chile. This bivalve species supports a booming aquaculture industry, which entirely relies on artificially collected seeds from natural beds that are translocated to diverse physical-chemical ocean farming conditions. Furthermore, mussel production is threatened by a broad range of microorganisms, pollution, and environmental stressors that eventually impact its survival and growth. Herein, understanding the genomic basis of the local adaption is pivotal to developing sustainable shellfish aquaculture. We present a high-quality reference genome of M. chilensis, which is the first chromosome-level genome for a Mytilidae member in South America. The assembled genome size was 1.93 Gb, with a contig N50 of 134 Mb. Through Hi-C proximity ligation, 11,868 contigs were clustered, ordered, and assembled into 14 chromosomes in congruence with the karyological evidence. The M. chilensis genome comprises 34,530 genes and 4795 non-coding RNAs. A total of 57% of the genome contains repetitive sequences with predominancy of LTR-retrotransposons and unknown elements. Comparative genome analysis of M. chilensis and M. coruscus was conducted, revealing genic rearrangements distributed into the whole genome. Notably, transposable Steamer-like elements associated with horizontal transmissible cancer were explored in reference genomes, suggesting putative relationships at the chromosome level in Bivalvia. Genome expression analysis was also conducted, showing putative genomic differences between two ecologically different mussel populations. The evidence suggests that local genome adaptation and physiological plasticity can be analyzed to develop sustainable mussel production. The genome of M. chilensis provides pivotal molecular knowledge for the Mytilus complex.


Assuntos
Mytilus edulis , Mytilus , Animais , Mytilus/genética , Chile , Aquicultura , Cromossomos/genética
14.
Fish Shellfish Immunol ; 33(4): 1065-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22971731

RESUMO

Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates.


Assuntos
Caramujos/genética , Caramujos/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , DNA Complementar/genética , Regulação da Expressão Gênica , Biblioteca Gênica , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Caramujos/imunologia , Enzimas de Conjugação de Ubiquitina/imunologia , Vibrio/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-35065314

RESUMO

We assessed the adaptive contribution of the mitochondrial genes involved with the respiratory chain and oxidative phosphorylation of the blue mussel Mytilus chilensis, a native and heavily exploited species in the inner sea of Chiloé Island, southern Chile. The assembled mitochondrial transcriptome of individuals from two ecologically different farm-impacted natural seedbeds, Cochamó (41°S) and Yaldad (42°S), represented about 4.5% of the whole de novo transcriptome of the species and showed location and tissue (gills, mantle) specific expression differences in 13 protein-coding mitochondrial genes. The RNA-Seq analysis detected differences in the number of up-regulated mitogenes between individuals from Cochamó (7) and Yaldad (11), some being tissue-specific (ND4L and COX2). However, the analysis did not detect transcripts-per-million (TPM = 0) of ND2 and ND5 in gills and ATP6 in mantle samples from Cochamó. Likewise, for ND6 and ATP8 in any sample. Several monomorphic location-specific mitochondrial genetic variants were detected in samples from Cochamó (78) and Yaldad (207), representing standing genetic variability to optimize mitochondrial functioning under local habitats. Overall, these mitochondrial transcriptomic differences reflect the impact of environmental conditions on the mitochondrial genome functioning and offer new markers to assess the effects on mussel fitness of habitat translocations, a routine industry practice. Likewise, these mitochondrial markers should help monitor and maintain adaptive population differences in this keystone and heavily exploited native species.


Assuntos
Genoma Mitocondrial , Mytilus , Animais , Brânquias , Humanos , Mytilus/genética , RNA-Seq , Transcriptoma
16.
Mar Genomics ; 65: 100970, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35839704

RESUMO

The giant mussel Choromytilus chorus is a marine bivalve commonly collected in central - southern Chile from fishery zones shared with the salmon industry. These economically relevant areas are also affected by the use of pesticides for controlling sea lice infestations in salmon aquaculture. Their main target is the sea louse Caligus rogercresseyi. However, other than some physiological impacts, the molecular effects of delousing drugs in non-target species such as C. chorus remain largely understudied. This study aimed to explore the transcriptome modulation of Trochophore and D larvae stages of C. chorus after exposure to azamethiphos and deltamethrin drugs. Herein, RNA-seq analyses and mRNA-lncRNAs molecular interactions were obtained. The most significant changes were found between different larval development stages exposed to delousing drugs. Notably, significant transcriptional variations were correlated with the drug concentrations tested. The biological processes involved in the development, such as cell movement and transcriptional activity, were mainly affected. Long non-coding RNAs (lncRNAs) were also identified in this species, and the transcription activity showed similar patterns with coding mRNAs. Most of the significantly expressed lncRNAs were associated with genes annotated to matrix metalloproteinases, collagenases, and transcription factors. This study suggests that exposure to azamethiphos or deltamethrin drugs can modulate the transcriptome signatures related to the early development of the giant mussel C. chorus.


Assuntos
Bivalves , Copépodes , Doenças dos Peixes , RNA Longo não Codificante , Salmo salar , Animais , Bivalves/genética , Copépodes/genética , Perfilação da Expressão Gênica , Salmo salar/genética , Salmão/genética , Transcriptoma
17.
Sci Rep ; 12(1): 783, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039517

RESUMO

The sea louse Caligus rogercresseyi has become one of the main constraints for the sustainable development of salmon aquaculture in Chile. Although this parasite's negative impacts are well recognized by the industry, some novel potential threats remain unnoticed. The recent sequencing of the C. rogercresseyi genome revealed a large bacterial community associated with the sea louse, however, it is unknown if these microorganisms should become a new focus of sanitary concern. Herein, chromosome proximity ligation (Hi-C) coupled with long-read sequencing were used for the genomic reconstruction of the C. rogercresseyi microbiota. Through deconvolution analysis, we were able to assemble and characterize 413 bacterial genome clusters, including six bacterial genomes with more than 80% of completeness. The most represented bacterial genome belonged to the fish pathogen Tenacibacullum ovolyticum (97.87% completeness), followed by Dokdonia sp. (96.71% completeness). This completeness allowed identifying 21 virulence factors (VF) within the T. ovolyticum genome and four antibiotic resistance genes (ARG). Notably, genomic pathway reconstruction analysis suggests putative metabolic complementation mechanisms between C. rogercresseyi and its associated microbiota. Taken together, our data highlight the relevance of Hi-C techniques to discover pathogenic bacteria, VF, and ARGs and also suggest novel host-microbiota mutualism in sea lice biology.


Assuntos
Copépodes/genética , Copépodes/microbiologia , Ectoparasitoses/genética , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Genômica/métodos , Interações Hospedeiro-Parasita , Microbiota/genética , Salmão/parasitologia , Animais , Chile , Copépodes/patogenicidade , Genoma/genética , Tenacibaculum/patogenicidade
18.
Microorganisms ; 11(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36677368

RESUMO

The host's physiological history and environment determine the microbiome structure. In that sense, the strategy used for the salmon transfer to seawater after parr-smolt transformation may influence the Atlantic salmon's intestinal microbiota. Therefore, this study aimed to explore the diversity and abundance of the Atlantic salmon intestinal microbiota and metagenome functional prediction during seawater transfer under three treatments. One group was exposed to gradual salinity change (GSC), the other to salinity shock (SS), and the third was fed with a functional diet (FD) before the seawater (SW) transfer. The microbial profile was assessed through full-16S rRNA gene sequencing using the Nanopore platform. In addition, metagenome functional prediction was performed using PICRUSt2. The results showed an influence of salinity changes on Atlantic salmon gut microbiota richness, diversity, and taxonomic composition. The findings reveal that GSC and the FD increased the Atlantic salmon smolt microbiota diversity, suggesting a positive association between the intestinal microbial community and fish health during seawater transfer. The reported knowledge can be applied to surveil the microbiome in smolt fish production, improving the performance of Atlantic salmon to seawater transfer.

19.
Fish Shellfish Immunol ; 30(1): 430-3, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20888919

RESUMO

Ferritin is the principal iron storage protein in the majority of living organisms. Its capacity to capture the toxic cellular iron in excess in a compact and safe manner, gives to this protein a key role in detoxification and iron storage. It has a main role in cellular homeostasis and in cellular defense against oxidative stress produced by the reactive oxygen species (ROS). In this research, the cDNA coding sequence of ferritin for Red abalone (Haliotis rufescens) was obtained, which had an open reading frame (ORF) of 516 bp. The deduced amino acid sequence was consisted of 171 residues with a calculated molecular weight of 19.77 kDa. In addition, tissue expression profiles of ferritin in Red abalone were induced by thermal stress showed an expression peak from 16 °C to 22 °C. The transcriptional level of ferritin was mainly achieved in muscle, digestive gland, gills, foot, mantle and gonad respectively. This research providing more information to better understands the structural and functional properties of this protein in Haliotis.


Assuntos
Ferritinas/metabolismo , Gastrópodes/metabolismo , Regulação da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Ferritinas/genética , Temperatura Alta , Anotação de Sequência Molecular , Estresse Fisiológico
20.
Front Genet ; 12: 666539, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093658

RESUMO

The study of adaptive population differences is relevant for evolutionary biology, as it evidences the power of selective local forces relative to gene flow in maintaining adaptive phenotypes and their underlying genetic determinants. However, human-mediated hybridization through habitat translocations, a common and recurrent aquaculture practice where hybrids could eventually replace local genotypes, risk populations' ability to cope with perturbations. The endemic marine mussel Mytilus chilensis supports a booming farming industry in the inner sea of Chiloé Island, southern Chile, which entirely relies on artificially collected seeds from natural beds that are translocated to ecologically different fattening centers. A matter of concern is how farm-impacted seedbeds will potentially cope with environmental shifts and anthropogenic perturbations. This study provides the first de novo transcriptome of M. chilensis; assembled from tissue samples of mantles and gills of individuals collected in ecologically different farm-impacted seedbeds, Cochamó (41°S) and Yaldad (43°S). Both locations and tissue samples differentially expressed transcripts (DETs) in candidate adaptive genes controlling multiple fitness traits, involved with metabolism, genetic and environmental information processing, and cellular processes. From 189,743 consensus contigs assembled: 1,716 (Bonferroni p value ≤ 0.05) were DETs detected in different tissues of samples from different locations, 210 of them (fold change ≥ | 100|) in the same tissue of samples from a different location, and 665 (fold change ≥ | 4|) regardless of the tissue in samples from a different location. Site-specific DETs in Cochamó (169) and Yaldad (150) in candidate genes controlling tolerance to temperature and salinity shifts, and biomineralization exhibit a high number of nucleotide genetic variants with regular occurrence (frequency > 99%). This novel M. chilensis transcriptome should help assessing and monitoring the impact of translocations in wild and farm-impacted mussel beds in Chiloé Island. At the same time, it would help designing effective managing practices for conservation, and translocation traceability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA