Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 14(4): e1006967, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659614

RESUMO

Kaposi sarcoma herpesvirus (KSHV/HHV-8) is a B cell tropic human pathogen, which is present in vivo in monotypic immunoglobulin λ (Igλ) light chain but polyclonal B cells. In the current study, we use cell sorting to infect specific B cell lineages from human tonsil specimens in order to examine the immunophenotypic alterations associated with KSHV infection. We describe IL-6 dependent maturation of naïve B lymphocytes in response to KSHV infection and determine that the Igλ monotypic bias of KSHV infection in vivo is due to viral induction of BCR revision. Infection of immunoglobulin κ (Igκ) naïve B cells induces expression of Igλ and isotypic inclusion, with eventual loss of Igκ. We show that this phenotypic shift occurs via re-induction of Rag-mediated V(D)J recombination. These data explain the selective presence of KSHV in Igλ B cells in vivo and provide the first evidence that a human pathogen can manipulate the molecular mechanisms responsible for immunoglobulin diversity.


Assuntos
Linfócitos B/metabolismo , Rearranjo Gênico , Infecções por Herpesviridae/genética , Herpesvirus Humano 8/patogenicidade , Cadeias lambda de Imunoglobulina/genética , Linfócitos B/imunologia , Linfócitos B/virologia , Células Cultivadas , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/genética , Humanos
2.
Viruses ; 12(12)2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276600

RESUMO

The virion proteins of Kaposi sarcoma-associated herpesvirus (KSHV) were initially characterized in 2005 in two separate studies that combined the detection of 24 viral proteins and a few cellular components via LC-MS/MS or MALDI-TOF. Despite considerable advances in the sensitivity and specificity of mass spectrometry instrumentation in recent years, leading to significantly higher yields in detections, the KSHV virion proteome has not been revisited. In this study, we have re-examined the protein composition of purified KSHV virions via ultra-high resolution Qq time-of-flight mass spectrometry (UHR-QqTOF). Our results confirm the detection of all previously reported virion proteins, in addition to 17 other viral proteins, some of which have been characterized as virion-associated using other methods, and 10 novel proteins identified as virion-associated for the first time in this study. These results add KSHV ORF9, ORF23, ORF35, ORF48, ORF58, ORF72/vCyclin, K3, K9/vIRF1, K10/vIRF4, and K10.5/vIRF3 to the list of KSHV proteins that can be incorporated into virions. The addition of these proteins to the KSHV virion proteome provides novel and important insight into early events in KSHV infection mediated by virion-associated proteins. Data are available via ProteomeXchange with identifier PXD022626.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/metabolismo , Proteoma , Proteômica , Proteínas Virais/metabolismo , Vírion/metabolismo , Linhagem Celular , Fracionamento Químico , Cromatografia Líquida , Herpesvirus Humano 8/isolamento & purificação , Humanos , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Controle de Qualidade , Espectrometria de Massas em Tandem , Proteínas Virais/isolamento & purificação , Vírion/isolamento & purificação
3.
Front Oncol ; 9: 1070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681603

RESUMO

Non-responsive subpopulation of tumor cells, and acquired resistance in initially responsive cells are major challenges for cancer therapy with molecularly-targeted drugs. While point mutations are considered the major contributing factor to acquired resistance, in this study we explored the role of heterogeneity and plasticity of selected human breast cancer cell lines (MDA-MB-231, MDA-MB-468, and AU565) in their initial and adjusted response, respectively, to ruxolitinib, everolimus, and erlotinib. After determination of lethal concentration for 50% cell death (LC50), cells were exposed to selected drugs using three different approaches: single exposure to 4 × LC50 and collection of surviving cells, multiple exposures to 1.5 × LC50 and monitoring the surviving population, and exposure to gradually increasing concentrations of selected drugs (range of concentrations equivalent to 10% of LC50 to 1.5 × LC50). Surviving cells were studied for adjustments in expression level of selected proteins using quantitative PCR and Western Blot. Our data indicated overexpression of a variety of proteins in resistant populations, which included cell membrane receptors EGFR and HER2, anti-apoptotic proteins Bcl-2 and BIRC8, and other proteins involved in cell signaling (e.g., Akt1, MAPK7, and RPS6KA5). Silencing the identified alternative proteins via siRNA resulted in significant drop in the LC50 of the selected molecularly-targeted drugs cells resistant to ruxolitinib (via targeting Akt), everolimus (via targeting EGFR, MAPK7, RPS6KA5, and HER2), and erlotinib (via silencing Bcl2 and BIRC8). Our data indicates that targeting well-selected alternative proteins could potentially sensitize the resistant cells to the effect of the molecularly-targeted treatment.

4.
Vaccine ; 37(30): 4184-4194, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31201053

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.1, gB, and gH/gL) into a single multivalent KSHV-like particle (KSHV-LP). Purified KSHV-LPs were similar in size, shape, and morphology to KSHV virions. Vaccination of rabbits with adjuvanted KSHV-LPs generated strong glycoprotein-specific antibody responses, and purified immunoglobulins from KSHV-LP-immunized rabbits neutralized KSHV infection in epithelial, endothelial, fibroblast, and B cell lines (60-90% at the highest concentration tested). These findings suggest that KSHV-LPs may be an ideal platform for developing a safe and effective prophylactic KSHV vaccine. We envision performing future studies in animal models that are susceptible to KSHV infection, to determine correlates of immune protection in vivo.


Assuntos
Anticorpos Neutralizantes/imunologia , Herpesvirus Humano 8/imunologia , Adjuvantes Imunológicos , Animais , Eletroforese em Gel de Poliacrilamida , Herpesvirus Humano 8/patogenicidade , Microscopia Eletrônica de Transmissão , Plasmídeos/genética , Coelhos , Vacinação/métodos , Proteínas do Envelope Viral/imunologia
5.
PLoS One ; 13(10): e0204531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289881

RESUMO

Topical application of Vitamin K1 has been demonstrated to effectively treat papulopustular skin rash, a serious and frequently encountered side effect of Epidermal Growth Factor Inhibitors (EGFRIs). Systemic absorption of vitamin K1 from skin and the resultant consequence of antagonizing EGFRIs anticancer effects jeopardizes the clinical acceptability of this rather effective treatment. The purpose of the present study was to rationally formulate and evaluate the release rate and transdermal absorption of a wide range of Vitamin K1 dermal preparations with a variety of physiochemical properties. A library of 33 formulations with were compounded and tested for Vitamin K1 permeation using hydrophobic membranes and porcine skin mounted in a Fran diffusion cells. Our results demonstrate the lowest diffusion for water-in-oil emulsions, which also demonstrated a negligible transdermal absorption. The statistical analysis showed a significant correlation between in vitro and ex vivo results. While viscosity did not have a significant impact on the diffusion or absorption of vitamin K1, an increase in the lipid content was correlated with an increase in transmembrane diffusion (not with transdermal absorption). Overall, formulation design significantly impacts the release rate and transdermal absorption of vitamin K1, and confirms the possibility of minimal systemic distribution of this vitamin for this specific purpose.


Assuntos
Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/farmacocinética , Absorção Cutânea/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Vitamina K 1/administração & dosagem , Vitamina K 1/farmacocinética , Administração Tópica , Animais , Antineoplásicos/efeitos adversos , Fármacos Dermatológicos/metabolismo , Difusão , Emulsões/administração & dosagem , Emulsões/química , Emulsões/farmacocinética , Géis/administração & dosagem , Géis/química , Géis/farmacocinética , Técnicas In Vitro , Lipídeos/química , Membranas Artificiais , Pomadas/administração & dosagem , Pomadas/química , Pomadas/farmacocinética , Pele/efeitos dos fármacos , Pele/metabolismo , Creme para a Pele/administração & dosagem , Creme para a Pele/química , Creme para a Pele/farmacocinética , Dermatopatias/induzido quimicamente , Tensoativos/química , Sus scrofa , Viscosidade , Vitamina K 1/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA