Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 45(6): 2869-2881, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30145641

RESUMO

PTEN (Phosphatase and tensin homolog deleted on chromosome ten) is a tumor suppressor that is frequently mutated in most human cancers. PTEN is a lipid and protein phosphatase that antagonizes PI3K/AKT pathway through lipid phosphatase activity at the plasma membrane. More recent studies showed that, in addition to the putative role of PTEN as a PI(3,4,5)P3 3-phosphatase, it is a PI(3,4)P2 3-phosphatase during stimulation of class I PI3K signaling pathway by growth factor. Although PTEN tumor suppressor function via it's lipid phosphatase activity occurs primarily in the plasma membrane, it can also be found in the nucleus, in cytoplasmic organelles and extracellular space. PTEN has also shown phosphatase independent functions in the nucleus. PTEN can exit from the cell through exosomal export or secretion and has a tumor suppressor function in adjacent cells. PTEN has a critical role in growth, the cell cycle, protein synthesis, survival, DNA repair and migration. Understanding the regulation of PTEN function, activity, stability, localization and its dysregulation outcomes and also the intracellular and extracellular role of PTEN and paracrine role of PTEN-L in tumor cells as an exogenous therapeutic agent can help to improve clinical conceptualization and treatment of cancer.


Assuntos
PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Animais , Ciclo Celular/fisiologia , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Genes Supressores de Tumor , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
J Integr Neurosci ; 17(1): 19-25, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29376880

RESUMO

Systemic Kainic Acid (KA) administration has been used to induce experimental temporal lobe epilepsy in rats. The aim of this study was to evaluate the neuroprotective effect of rosemary extract (RE, 40% Carnosic acid) against KA-induced neurotoxicity in hippocampus and impaired learning and memory. Animals received a single dose of KA (9.5 mg/kg) intraperitoneally (i.p.) (KA group) and were observed for 2 h and were scored from 0 (for normal, no convulsion) to 5 (for continuous generalized limbic seizures). RE (100 mg/kg, orally) was administered daily for 23 days, starting a week before KA injection (KA+RE group). Neuronal degeneration in hippocampus was demonstrated by using Fluoro-Jade B immunofluorescence. The number of pyramidal cells in hippocampus was evaluated by Nissl staining. Also, the Morris Water Maze and Shuttle box have been used to assess spatial memory and passive avoidance learning, respectively. Our results revealed that, after treatment with RE, neuronal loss in CA1 decreased significantly in the animals in KA+RE group. The Morris water navigation task results revealed that spatial memory impairment decreased in the animals in KA+RE group. Furthermore, results in Shuttle box test showed that passive avoidance learning impairment significantly, upgraded in the animals in KA+RE group. These results suggest that RE may improve the spatial and working memory deficits and also neuronal degeneration induced by toxicity of KA in the rat hippocampus, due to its antioxidant activities.


Assuntos
Hipocampo/patologia , Degeneração Neural/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Rosmarinus/química , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/terapia , Agonistas de Aminoácidos Excitatórios/toxicidade , Fluoresceínas/metabolismo , Hipocampo/efeitos dos fármacos , Ácido Caínico/toxicidade , Deficiências da Aprendizagem/induzido quimicamente , Deficiências da Aprendizagem/complicações , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/complicações , Degeneração Neural/etiologia , Neurônios/patologia , Ratos , Ratos Wistar , Fatores de Tempo
3.
Tissue Cell ; 91: 102558, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260072

RESUMO

BACKGROUND: Stem cell-based therapy has emerged as an attractive approach for regenerative medicine. Poor survival and maintenance of the cells used in regenerative medicine are considered as serious barriers to enhance the efficacy of the cell therapy. Using some antioxidants has been reported to prevent the aging of stem cells, and finding effective factors to reduce the senescence of these cells has impressive potential in cell therapy. The PI3K pathway adversely regulates the transcription factors known as FOXO, which are thought to have an inhibitory influence on cell proliferation. By downregulating FOXO and other targets, PI3K signaling controls the growth of cells. For this reason, the aim of the present study is to investigate the effect of L-carnitine (LC) as antioxidant on the cell proliferation and the protein expression of PI3K and FOXO. METHODS: For understanding the in vitro effect of LC on the PI3K and FOXO-1 expression of C-kit+ hematopoietic progenitor cells, the bone marrow mononuclear cells were isolated, and C-kit+ cells was enriched by the magnetic-activated cell sorting (MACS). Next, the identification of enriched C-kit+ cells were done by flowcytometry and immunocytochemistry. Then, C-kit+ cells were treated with 0.2 mM LC, the cells were collected at the end of the treatment period (48 h), and the proteins were extracted. In the following, the protein expression of PI3K and FOXO-1 was measured by western blotting. In addition, flowcytometry was done to assess the Ki-67 expression as a key marker for cell proliferation investigation. RESULTS: 0.2 mM LC cause to significantly decrease in the protein expression of PI3K and FOXO-1 (*P<0.05 and **P<0.01, respectively). Also, the expression of Ki-67 was significantly increased in the presence of 0.2 mM LC (***P<0.001). CONCLUSION: Briefly, LC can be considered an effective factor in increasing the proliferation of C-kit+ cells via some signaling pathways.

4.
Life Sci ; 242: 117223, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881222

RESUMO

Acute lymphoblastic leukemia (ALL) is an aggressive cancer in children and adults which possess higher CD47 expression than normal cells. ALL chemotherapy has a lot of side effects and in most cases is ineffective. However arrival of Natural killer (NK) cell immunotherapy raised hopes for successful treatment of cancers, tailoring NK cells to meet clinical requirements is still under investigation. Of note, CD16+ (FCγIIIa) NK cells eliminate tumor cells with antibody dependent cell cytotoxicity (ADCC) mechanism. Therefore, we evaluated ADCC effect of cord blood stem cell derived CD16+ NK cells with using anti CD47 blocking antibody. CD16+ NK cells generated efficiently from CD34 positive cord blood cells in vitro using IL-2, IL-15 and IL-21 cytokines, although it was not dose dependent. CD16+ cells derived from CD34+ cells in day 14 of culture efficiently increased apoptosis in ALL cells, produced INFγ and increased CD107-a expression when used anti CD47 antibody (increased around 30-40%). Interestingly, CD16+ NK cell cytotoxicity slightly increased in combination with macrophages against ALL cells (around 10%). Taken together, our findings induced this hope that cord blood stem cell derived CD16+ NK cells exploit antitumor immune response in cancer therapy with using anti-CD47 antibody.


Assuntos
Anticorpos Anti-Idiotípicos/uso terapêutico , Antígeno CD47/imunologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Células Matadoras Naturais/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de IgG/imunologia , Anticorpos Anti-Idiotípicos/imunologia , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Imunoterapia/métodos , Microscopia de Fluorescência , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
5.
Adv Pharm Bull ; 9(3): 470-480, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31592121

RESUMO

Purpose: The PI3K/Akt signaling pathway regulates cell growth, proliferation and viability in hematopoietic cells. This pathway always dysregulates in acute lymphoblastic leukemia (ALL). PTEN and P53 are tumor suppressor genes correlated with PI3K/Akt signaling pathway, and both have a tight link in regulation of cell proliferation and cell death. In this study, we investigated the effects of dual targeting of PI3K/Akt pathway by combined inhibition with nvp-BKM-120 (PI3K inhibitor) and MK-2206 (Akt inhibitor) in relation with PTEN and P53 on apoptosis and proliferation of leukemia cells. Methods: Both T and B ALL cell lines were treated with both inhibitors alone or in combination with each other, and induction of apoptosis and inhibition of proliferation were evaluated by flow cytometry. Expression levels of PTEN as well as p53 mRNA and protein were measured by real-time qRT-PCR and western blot, respectively. Results: We indicated that both inhibitors (BKM-120 and MK-2206) decreased cell viability and increased cytotoxicity in leukemia cells. Reduction in Akt phosphorylation increased PTEN and p53 mRNA and p53 protein level (in PTEN positive versus PTEN negative cell lines). Additionally, both inhibitors, particularly in combination with each other, increased apoptosis (evaluated with Annexin V and caspase 3) and reduced proliferation (Ki67 expression) in leukemia cells. However, administration of IL7 downregulated PTEN and P53 mRNA expression and rescued cancer cells following inhibition of BKM-120 and MK-2206. Conclusion: This investigation suggested that inhibition of Akt and PI3K could be helpful in leukemia treatment.

6.
Biomed Pharmacother ; 108: 216-223, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30219679

RESUMO

Despite the advances in the discovery of various types of anticancer drugs for curing acute lymphoblastic leukemia (ALL), their toxicity and unfavorable side effects remained as big limitations for therapeutical applications. In this regard, natural products such as Streptomyces -derived agents have shown potential applications as anticancer drugs. The present study deals with evaluating the anti-carcinogenic activity of the ether extracted metabolites derived from Streptomyces on nalm-6 and molt-4 ALL cell lines. MTT assay was performed to evaluate the cytotoxicity effect of Streptomyces sp on nalm-6 and molt-4 cell lines. Apoptosis and proliferation were evaluated by Flow cytometry. Quantitative real-time RT-PCR (qRT-PCR) and western blot were performed to investigate the effect of these metabolites on the mRNA and protein expression levels of P53, Bax, and Bcl2. In both cell lines, extracted metabolites significantly inhibited cell growth and increased apoptosis. Although P53, Bax mRNA and protein expressions were increased, Bcl-2 expression decreased in treated cells compared with control. In addition, the G0/G1 arrest of Nalm-6 cells was induced. These findings of this work show that the ether-extracted metabolites from Streptomyces levis ABRIINW111 can be used as an anti-carcinogenic for acute lymphoblastic leukemia cells.


Assuntos
Apoptose , Meios de Cultura/química , Éter/química , Metaboloma , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Streptomyces/metabolismo , Apoptose/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais
7.
Adv Pharm Bull ; 7(1): 81-85, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28507940

RESUMO

Purpose: Mammalian target of rapamycin (mTOR)is important in hematopoiesis and affect cell growth,differentiation and survival. Although previous studies were identified the effect of cytokines on the mononuclear cells development however the cytokines effect on mTOR in cord blood mononuclear cells was unclear. The aim of this study was to evaluate mTOR expression in cord blood mononuclear and cord blood stem cells (CD34+ cells) in culture conditions for lymphoid cell development. Methods: Isolation of The mononuclear cells (MNCs) from umbilical cord blood were done with use of Ficollpaque density gradient. We evaluated cultured cord blood mononuclear and CD34+ cells in presece of IL2, IL7 and IL15 at distinct time points during 21 days by using flow cytometry. In this study, we presented the role of IL2, IL7 and IL15 on the expression of mTOR in cord blood cells. Results: mTOR expression were increased in peresence of IL2, IL7 and IL15 in day 14 and afterword reduced. However in persence of IL2 and IL15 expression of mTOR significantly reduced. mTOR expression in CD34+ cells decreased significantly from day7 to day 21 in culture. Conclusion: cytokines play important role in mTOR expression during hematopoiesis and development of cord blood mononuclear cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA