Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493304

RESUMO

The cytotoxic activity, EGFR/VEGFR2 target inhibition, apoptotic activity, RT-PCR gene expression, in vivo employing a solid-Ehrlich carcinoma model, and in silico investigations for highlighting the binding affinity of eight quinoxaline derivatives were tested for anticancer activities. The results showed that compound 8 (N-allyl quinoxaline) had potent cytotoxicity against A594 and MCF-7 cancer cells with IC50 values of 0.86 and 1.06 µM, respectively, with noncytotoxic activity against WISH and MCF-10A cells having IC50 values more than 100 µM. Furthermore, it strongly induced apoptotic cell death in A549 and MCF-7 cells by 43.13% and 34.07%, respectively, stopping the cell cycle at S and G1-phases. For the molecular target, the results showed that compound 8 had a promising EGFR inhibition activity with an IC50 value of 0.088 µM compared to Sorafenib (IC50 = 0.056 µM), and it had a promising VEGFR2 inhibition activity with an IC50 value of 0.108 µM compared to Sorafenib (IC50 = 0.049 µM). Treatment with compound 8 ameliorated biochemical and histochemical parameters near normal in the in vivo investigation, with a tumor inhibition ratio of 68.19% compared to 64.8% for 5-FU treatment. Finally, the molecular docking study demonstrated the binding affinity through binding energy and interactive binding mode inside the EGFR/VEGFR2 proteins. Potent EGFR and VEGFR2 inhibition of compound 8 suggests its potential for development as a selective anticancer drug.


Assuntos
Antineoplásicos , Quinoxalinas , Humanos , Relação Estrutura-Atividade , Sorafenibe/farmacologia , Simulação de Acoplamento Molecular , Quinoxalinas/farmacologia , Apoptose , Antineoplásicos/química , Receptores ErbB/metabolismo , Proliferação de Células , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases/farmacologia
2.
Bioorg Chem ; 143: 106988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995644

RESUMO

For the horseshoe tactic to succeed in inhibiting c-Met and Pim-1, the nicotinonitrile derivatives (2a-n) were produced in high quantities by coupling acetyl phenylpyrazole (1) with the proper aldehydes and ethyl cyanoacetate under basic conditions. Consistent basic and spectroscopic data (NMR, IR, Mass, and HPLC) supported the new products' structural findings. With IC50 potency in nanomolar ranges, these compounds had effectively repressed them, particularly compounds 2d and 2 h, with IC50 values below 200 nM. The most potent compounds (2d and 2 h) were tested for their antitumor effects against prostate (PC-3), colon (HCT-116), and breast (MDA-MB-231) and were evaluated in comparison to the anticancer drug tivantinib using the MTT assay. Similar to tivantinib, these compounds showed good antiproliferative properties against the HCT-116 tumor cells while having low cytotoxicity towards healthy fetal colon (FHC) cells. In the HCT-116 cell line, their ability to trigger the apoptotic cascade was also investigated by looking at the level of Bax and Bcl-2 as well as the activation of the proteolytic caspase cascade. When HCT-116 cells were exposed to compounds 2d and 2 h in comparison to the control, active caspase-3 levels increased. The HCT-116 cell line also upregulated Bcl-2 protein levels and downregulated Bax levels. Additionally, when treated with compound 2d, the HCT-116 cell cycle was primarily stopped at the S phase. Compared to the control, compound 2d treatment significantly inhibited the protein expression levels of c-Met and Pim-1 kinases in the treated HCT-116 cells. Thorough molecular modeling analyses, such as molecular docking and dynamic simulation, were performed to ascertain the binding mechanism and stability of the target compounds.


Assuntos
Antineoplásicos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Proteína X Associada a bcl-2 , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Proliferação de Células , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases , Apoptose
3.
Bioorg Chem ; 144: 107086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219478

RESUMO

The upregulation of RecQ helicases has been associated with cancer cell survival and resistance to chemotherapy, making them appealing targets for therapeutic intervention. In this study, twenty-nine novel quinazolinone derivatives were designed and synthesized. The anti-proliferative activity of all compounds was evaluated against 60 cancer cell lines at the National Cancer Institute Developmental Therapeutic Program, with six compounds (11f, 11g, 11k, 11n, 11p, and 11q) being promoted to a five-dose screen. Compound 11g demonstrated high cytotoxic activity against all examined cell lines. The compounds were further assayed for Bloom syndrome (BLM) helicase inhibition, where 11g, 11q, and 11u showed moderate activity. These compounds were counter-screened against WRN and RECQ1 helicases, where 11g moderately inhibited both enzymes. An ATP competition assay confirmed that the compounds bound to the ATP site of RecQ helicases, and molecular docking simulations were used to study the binding mode within the active site of BLM, WRN, and RECQ1 helicases. Compound 11g induced apoptosis in both HCT-116 and MDA-MB-231 cell lines, but also caused an G2/M phase cell cycle arrest in HCT-116 cells. This data revealed the potential of 11g as a modulator of cell cycle dynamics and supports its interaction with RecQ helicases. In addition, compound 11g displayed non-significant toxicity against FCH normal colon cells at doses up to 100 µM, which confirming its high safety margin and selectivity on cancer cells. Overall, these findings suggest compound 11g as a potential pan RecQ helicase inhibitor with high anticancer potency and a favorable safety margin and selectivity.


Assuntos
Antineoplásicos , RecQ Helicases , Simulação de Acoplamento Molecular , RecQ Helicases/metabolismo , Quinazolinonas/farmacologia , Antineoplásicos/farmacologia , Trifosfato de Adenosina
4.
Bioorg Chem ; 153: 107778, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39244971

RESUMO

In the current medical era, human health is confronted with various challenges, with cancer being a prominent concern. Therefore, enhancing the therapeutic arsenal for cancer with a constant influx of novel molecules that selectively target tumor cells while displaying minimal toxicity toward normal cells is imperative. This study delves into the antiproliferative and EGFR kinase inhibitory activities of newly reported spirooxindole-pyrazolo[3,4-b]pyridine derivatives 8a-h and 10a-h. The inhibitory effects on the growth of human cancer cell lines A-549 (lung carcinoma), Panc-1 (pancreatic carcinoma), and A-431 (skin epidermoid carcinoma) were evaluated, and the SAR has been clarified through analysis. With IC50 values in the single-digit micromolar range, compounds 8b, 8d, 10a-b, and 10d were shown to be the most effective antiproliferative candidates against the studied cancer cell lines. They also exerted negligible cytotoxicity (with selectivity scores between 8.63 and 30.02) against the human lung MRC5 cell line. Additionally, we investigated the potential inhibitory action of compounds 8b, 8d, 10a-b, and 10d on EGFR and VEGFR-2. 10a was this investigation's most effective EGFR inhibitor, with an IC50 value of 0.54 µM. Ultimately, the molecular docking analysis of congener 10a highlighted its effective suppression of EGFR by examining its binding mode and docking score compared to Erlotinib. These findings underscore the potential of spirooxindole-pyrazolo[3,4-b]pyridine derivatives as promising anticancer agents targeting EGFR kinase.

5.
Bioorg Chem ; 153: 107804, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39276491

RESUMO

In the current medical era, developing new PIM-1 inhibitors stands as a significant approach to cancer management due to the pivotal role of PIM-1 kinase in promoting cell survival, proliferation, and drug resistance in various cancers. This study involved designing and synthesizing new derivatives of pyrazolo[1,5-a]pyrimidines (6a-i) and pyrazolo[3,4-b]pyridines (10a-i) as potential anti-cancer agents targeting PIM-1 kinase. The cytotoxicity was screened on three cancer cell lines: A-549 (lung), PANC-1 (pancreatic), and A-431 (skin), alongside MRC5 normal lung cells to assess selectivity. Several pyrazolo[1,5-a]pyrimidines (6b, 6c, 6g, 6h, and 6i) and pyrazolo[3,4-b]pyridine (10f) demonstrated notable anticancer properties, particularly against A-549 lung cancer cells (IC50 range: 1.28-3.52 µM), also they exhibited significantly lower toxicity towards MRC5 normal cells. Thereafter, the compounds were evaluated for their inhibitory activity against PIM-1 kinase. Notably, 10f, bearing a 4-methoxyphenyl moiety, demonstrated good inhibition of PIM-1 with an IC50 of 0.18 µM. Additionally, 10f induced apoptosis and arrested cell cycle progression in A-549 cells. Molecular docking and dynamics simulations provided insights into the binding interactions and compounds' stability with PIM-1 kinase. The results highlight these compounds, especially 10f, as promising selective anticancer agents targeting PIM-1 kinase.

6.
Bioorg Chem ; 151: 107682, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137597

RESUMO

c-MET and STAT-3 are significant targets for cancer treatments. Here, we describe a class of very effective dual STAT-3 and c-MET inhibitors with coumarin-based thiazoles (3a-o) as its scaffold. Spectroscopic evidence (NMR, HRMS, and HPLC) validated the structural discoveries of the new compounds. The cytotoxic activity of these compounds was also tested against a panel of cancer cells in accordance with US-NCI guidelines. Compound 3g proved to be active at 10 µM, thus it was automatically scheduled to be tested at five doses. Towards SNB-75 (CNS cancer cell line), compound 3g showed notable in vitro anti-cancer activity with GI50 = 1.43 µM. For the molecular targets, compound 3g displayed potent activity towards STAT-3 and c-MET having IC50 of 4.7 µM and 12.67, respectively, compared to Cabozantinib (IC50 = 15 nM of c-MET) and STAT-3-IN-3 (IC50 = 2.1 µM of STAT-3). Moreover, compound 3g significantly induced apoptosis in SNB-75 cells, causing a 3.04-fold increase in apoptotic cell death (treated cells exhibited 11.53 % overall apoptosis, against 3.04 % in reference cells) and a 3.58-fold increase in necrosis. Moreover, it arrests cells at the G2 phase. Dual inhibition of c-MET and STAT-3 protein kinase was further validated using RT-PCR. The target compound's binding mechanism was determined by the application of molecular docking.


Assuntos
Antineoplásicos , Proliferação de Células , Cumarínicos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Proto-Oncogênicas c-met , Fator de Transcrição STAT3 , Tiazóis , Humanos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Simulação de Acoplamento Molecular
7.
Arch Pharm (Weinheim) ; 357(9): e2400225, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38822393

RESUMO

The current review outlines all possible recent synthetic platforms to quinoxaline derivatives and the potent stimulated apoptosis mechanisms targeted by anticancer therapies. The currently reported results disclosed that quinoxaline derivatives had promising anticancer potencies against a wide array of cancer cell lines, better than the reference drugs, through target inhibition. This review summarizes some potent quinoxaline derivatives with their synthesis strategies and their potential activities against various molecular targets. Quinoxalines can be considered an important scaffold for apoptosis inducers in cancer cells through inhibiting some molecular targets, so they can be further developed as target-oriented chemotherapeutics.


Assuntos
Antineoplásicos , Apoptose , Neoplasias , Quinoxalinas , Quinoxalinas/farmacologia , Quinoxalinas/síntese química , Quinoxalinas/química , Humanos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Relação Estrutura-Atividade , Animais , Estrutura Molecular , Terapia de Alvo Molecular , Linhagem Celular Tumoral
8.
J Enzyme Inhib Med Chem ; 38(1): 2163996, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629439

RESUMO

In the present study, 5-arylidene rhodanine derivatives 3a-f, N-glucosylation rhodanine 6, S-glucosylation rhodanine 7, N-glucoside rhodanine 8 and S-glucosylation 5-arylidene rhodanines 13a-c were synthesised and screened for cytotoxicity against a panel of cancer cells with investigating the effective molecular target and mechanistic cell death. The anomers were separated by flash column chromatography and their configurations were assigned by NMR spectroscopy. The stable structures of the compounds under study were modelled on a molecular level, and DFT calculations were carried out at the B3LYP/6-31 + G (d,p) level to examine their electronic and geometric features. A good correlation between the quantum chemical descriptors and experimental observations was found. Interestingly, compound 6 induced potent cytotoxicity against MCF-7, HepG2 and A549 cells, with IC50 values of 11.7, 0.21, and 1.7 µM, compared to Dox 7.67, 8.28, and 6.62 µM, respectively. For the molecular target, compound 6 exhibited topoisomerase II inhibition and DNA intercalation with IC50 values of 6.9 and 19.6 µM, respectively compared to Dox (IC50 = 9.65 and 31.27 µM). Additionally, compound 6 treatmnet significantly activated apoptotic cell death in HepG2 cells by 80.7-fold, it induced total apoptosis by 34.73% (23.07% for early apoptosis, 11.66% for late apoptosis) compared to the untreated control group (0.43%) arresting the cell population at the S-phase by 49.6% compared to control 39.15%. Finally, compound 6 upregulated the apoptosis-related genes, while it inhibted the Bcl-2 expression. Hence, glucosylated rhodanines may serve as a promising drug candidates against cancer with promising topoisomerase II and DNA intercalation.


Assuntos
Antineoplásicos , Rodanina , Estrutura Molecular , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores da Topoisomerase II/química , DNA Topoisomerases Tipo II/metabolismo , DNA , Relação Estrutura-Atividade , Proliferação de Células , Apoptose
9.
J Enzyme Inhib Med Chem ; 38(1): 2281260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994663

RESUMO

Despite the crucial role of CDK2 in tumorigenesis, few inhibitors reached clinical trials for managing lung cancer, the leading cause of cancer death. Herein, we report combinatorial stereoselective synthesis of rationally designed spiroindeno[1,2-b]quinoxaline-based CDK2 inhibitors for NSCLC therapy. The design relied on merging pharmacophoric motifs and biomimetic scaffold hopping into this privileged skeleton via cost-effective one-pot multicomponent [3 + 2] cycloaddition reaction. Absolute configuration was assigned by single crystal x-ray diffraction analysis and reaction mechanism was studied by Molecular Electron Density Theory. Initial MTT screening of the series against A549 cells and normal lung fibroblasts Wi-38 elected 6b as the study hit regarding potency (IC50 = 54 nM) and safety (SI = 6.64). In vitro CDK2 inhibition assay revealed that 6b (IC50 = 177 nM) was comparable to roscovitine (IC50 = 141 nM). Docking and molecular dynamic simulations suggested that 6b was stabilised into CDK2 cavity by hydrophobic interactions with key aminoacids.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Quinase 2 Dependente de Ciclina , Neoplasias Pulmonares , Humanos , Antineoplásicos/química , Benzimidazóis/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Quinoxalinas
10.
J Enzyme Inhib Med Chem ; 38(1): 2157825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629421

RESUMO

In this research, two novel series of dibenzo[b,f]azepines (14 candidates) were designed and synthesised based on the rigidification principle and following the reported doxorubicin's pharmacophoric features. The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines. Further, the promising candidates (5a-g) were evaluated for their ability to inhibit topoisomerase II, where 5e was noticed to be the most active congener. Moreover, its cytotoxicity was evaluated against leukaemia SR cells. Also, 5e arrested the cell cycle at the G1 phase and increased the apoptosis ratio by 37.34%. Furthermore, in vivo studies of 5e showed the inhibition of tumour proliferation and the decrease in its volume. Histopathology and liver enzymes were examined as well. Besides, molecular docking, physicochemical, and pharmacokinetic properties were carried out. Finally, a SAR study was discussed to open the gate for further optimisation of the most promising candidate (5e).HighlightsTwo novel series of dibenzo[b,f]azepines were designed and synthesised based on the rigidification principle in drug design.The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines.5e was the most active anti-topo II congener (IC50 = 6.36 ± 0.36 µM).5e was evaluated against leukaemia SR cells and its cytotoxic effect was confirmed (IC50 = 13.05 ± 0.62 µM).In vivo studies of 5e significantly inhibited tumour proliferation by 62.7% and decreased tumour volume to 30.1 mm3 compared to doxorubicin treatment.


Assuntos
Antineoplásicos , Leucemia , Humanos , Inibidores da Topoisomerase II/química , Relação Estrutura-Atividade , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Azepinas/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia , DNA , Proliferação de Células , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , DNA Topoisomerases Tipo II/metabolismo
11.
Arch Pharm (Weinheim) ; 356(6): e2200654, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002183

RESUMO

New derivatives of 2-phenylquinazolin-4(3H)-one were designed, synthesized, and biologically evaluated as potent allosteric kinase inhibitors with in situ cytotoxicity against MCF-7 and HepG2 cells. Compounds 15 and 18 among the proposed compounds showed promising antiproliferative activity against MCF-7 (IC50 = 1.35 µM) and HepG2 cells (IC50 = 3.24 µM), comparable to sorafenib, with IC50 values of 3.04, 2.93 µM, respectively, according to in situ cytotoxicity testing. Comparing compounds 15 and 18 to sorafenib, the in vitro VEGFR-2 inhibitory activity displayed encouraging selective efficacy with IC50 values of 13, 67, and 30 nM, respectively. Results of VEGFR-2 inhibition at various ATP concentrations proved that there was no statistically significant difference between the IC50 values, which improved the non-ATP competitive binding. Compound 15 caused apoptotic breast cancer cell death with 55.11-fold cell-cycle arrest at the S-phase, where it affected the apoptosis-mediated genes through upregulating P53, Bax, caspases 3, 8, and 9 and downregulating the antiapoptotic gene Bcl-2. A molecular docking study was conducted to confirm the binding of the designed compounds to the allosteric site of VEGFR-2 in DFG-out mode, leaving the ATP-binding pocket unoccupied when superimposed to the pose of sorafenib. The designed molecules showed resealable binding affinity toward the DFG loop and the allosteric site. Hence, the 2-phenylquinazolin-4(3H)-one derivative constitutes intriguing starting points for designing apoptotic-inducing drugs.


Assuntos
Antineoplásicos , Humanos , Relação Estrutura-Atividade , Estrutura Molecular , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
12.
Arch Pharm (Weinheim) ; 356(8): e2300185, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37253118

RESUMO

A series of 16 novel spirooxindole analogs 8a-p were designed and constructed via cost-effective single-step multicomponent [3+2] cycloaddition reaction of azomethine ylide (AY) generated in situ from substituted isatin (6a-d) with suitable amino acids (7a-c) and ethylene-engrafted pyrazole derivatives (5a,b). The potency of all compounds was assayed against a human breast cancer cell line (MCF-7) and a human liver cell line (HepG2). Spiro compound 8c was the most active member among the synthesized candidates, with exceptional cytotoxicity against the MCF-7 and HepG2 cell lines, with IC50 values of 0.189 ± 0.01 and 1.04 ± 0.21 µM, respectively. The candidate 8c exhibited more potent activity (10.10- and 2.27-fold) than the standard drug roscovitine (IC50 = 1.91 ± 0.17 µM (MCF-7) and 2.36 ± 0.21 µM (HepG2)). Compound 8c was investigated for epidermal growth factor receptor (EGFR) inhibition; it exhibited promising IC50 values of 96.6 nM compared with 67.3 nM for erlotinib. The IC50 value of 8c (34.98 nM) exhibited cyclin-dependent kinase 2 (CDK-2) inhibition, being more active than roscovitine the (IC50 = 140 nM) in targeting the CDK-2 kinase enzyme. Additionally, for apoptosis induction of compound 8c in MCF-7, it upregulated the expression levels of proapoptotic genes for P53, Bax, caspases-3, 8, and 9 at up to 6.18, 4.8, 9.8, 4.6, 11.3 fold-change, respectively, and downregualted the level of the antiapoptotic gene for Bcl-2 by 0.14-fold. Finally, a molecular docking study of the most active compound 8c highlighted a good binding affinity with Lys89 as the key amino acid for CDK-2 inhibition.


Assuntos
Antineoplásicos , Humanos , Oxindóis/farmacologia , Oxindóis/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Roscovitina/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Apoptose
13.
Molecules ; 28(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630304

RESUMO

The current work was conducted to synthesize several novel anti-inflammatory quinazolines having sulfamerazine moieties as new 3CLpro, cPLA2, and sPLA2 inhibitors. The thioureido derivative 3 was formed when compound 2 was treated with sulfamerazine. Also, compound 3 was reacted with NH2-NH2 in ethanol to produce the N-aminoquinazoline derivative. Additionally, derivative 4 was reacted with 4-hydroxy-3-methoxybenzaldehyde, ethyl chloroacetate, and/or diethyl oxalate to produce quinazoline derivatives 5, 6, and 12, respectively. The results of the pharmacological study indicated that the synthesized 4-6 and 12 derivatives showed good 3CLpro, cPLA2, and sPLA2 inhibitory activity. The IC50 values of the target compounds 4-6, and 12 against the SARS-CoV-2 main protease were 2.012, 3.68, 1.18, and 5.47 µM, respectively, whereas those of baicalein and ivermectin were 1.72 and 42.39 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against sPLA2 were 2.84, 2.73, 1.016, and 4.45 µM, respectively, whereas those of baicalein and ivermectin were 0.89 and 109.6 µM, respectively. The IC50 values of the target compounds 4-6, and 12 against cPLA2 were 1.44, 2.08, 0.5, and 2.39 µM, respectively, whereas those of baicalein and ivermectin were 3.88 and 138.0 µM, respectively. Also, incubation of lung cells with LPS plus derivatives 4-6, and 12 caused a significant decrease in levels of sPLA2, cPLA2, IL-8, TNF-α, and NO. The inhibitory activity of the synthesized compounds was more pronounced compared to baicalein and ivermectin. In contrast to ivermectin and baicalein, bioinformatics investigations were carried out to establish the possible binding interactions between the newly synthesized compounds 2-6 and 12 and the active site of 3CLpro. Docking simulations were utilized to identify the binding affinity and binding mode of compounds 2-6 and 12 with the active sites of 3CLpro, sPLA2, and cPLA2 enzymes. Our findings demonstrated that all compounds had outstanding binding affinities, especially with the key amino acids of the target enzymes. These findings imply that compound 6 is a potential lead for the development of more effective SARS-CoV-2 Mpro inhibitors and anti-COVID-19 quinazoline derivative-based drugs. Compound 6 was shown to have more antiviral activity than baicalein and against 3CLpro. Furthermore, the IC50 value of ivermectin against the SARS-CoV-2 main protease was revealed to be 42.39 µM, indicating that it has low effectiveness.


Assuntos
COVID-19 , Humanos , Simulação de Acoplamento Molecular , Ivermectina , SARS-CoV-2 , Sulfamerazina , Relação Estrutura-Atividade , Fosfolipases A2 Citosólicas
14.
Bioorg Chem ; 122: 105708, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290929

RESUMO

According to the World Health Organization (WHO) statistics: In 2020, there were 2.3 million women diagnosed with breast cancer and 685,000 deaths globally. Therefore, searching for new leads for fighting this type of cancer is necessary. VEGFR-2 kinase plays a crucial role in the proliferation, migration, and survival of breast cancer cells so, identifying novel inhibitors for VEGFR-2 could be effective in breast cancer treatment. Accordingly, novel heterocyclic compounds containing indole, 1,2,4-triazole, and glycosyl or allyl moieties were synthesized. The synthesized compounds were evaluated for their cytotoxic and apoptotic activities towards breast cancer cell lines (MCF7). In this regard, compounds 6, 17, and 18 exhibited promising cytotoxic activity against MCF-7 cells with IC50 values of 3.06, 1.18, and 3.02 µM compared to Sorafenib (IC50 = 2.13 µM). Interestingly, among the identified lead molecules, compound 17 displayed remarkable VEGFR2 inhibition activity with IC50 value of 19.8 nM compared to Sunitinib (IC50 = 75 nM) and Sorafenib (IC50 = 30 nM). Moreover, it is significantly stimulated apoptotic breast cancer cell death; it induced apoptosis by 17.4 %, arresting the cell cycle phases at G1 and S-phases. Additionally, in vivo (Xenograft model) study validated the anticancer activity of the hit compound 17, which showed a tumor inhibition ratio of 54.2 % compared to 5-FU (49.5%) with an improvement of hematological and biochemical parameters. The results disclosed that the identified hit compound 17 is validated for impeding cell proliferation and migration through apoptosis activation and VEGFR2 inhibition.


Assuntos
Antineoplásicos , Neoplasias da Mama , Inibidores de Proteínas Quinases , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Bases de Schiff/farmacologia , Relação Estrutura-Atividade , Triazóis/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
15.
Bioorg Chem ; 127: 105995, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35792315

RESUMO

Apparently, tubulin inhibitors binding to the colchicine-binding site (CBS) currently have outstanding attention for cancer treatment. So, a series of benzo[b]azonin-2-one derivatives having the same pharmacophoric features as colchicine binding site inhibitors (CBSIs) were synthesized targeting the CBS of ß-tubulin. The antiproliferative activities of the newly synthesized compounds were assessed against five different cancer cell lines; HepG-2, MCF-7, MDA-MB-231, HCT-116, and Caco-2. Compounds 7a and 7d displayed promising inhibitory activities against all tested cell lines. They were further estimated towards ß-tubulin at CBS along with colchicine (Col) as a reference drug. It was shown that the assessed candidates (7a and 7d) and Col exhibited CBSI activities of 5492, 3771, and 486c.p.m./mg protein, respectively, at a concentration of 10 µM. Furthermore, compound 7d was picked out to assess its effects on apoptosis and cell-cycle profile using Annexin V-FITC and PI staining assay. In addition, the apoptotic activity of 7d was investigated using gene expression analysis of apoptosis-related genes of P53, Bax, Caspases 3 and 9, and Bcl-2 in both treated and untreated cells. Moreover, compound 7d was further assessed through in vivo studies using solid Ehrlich carcinoma (SEC)-bearing mice. Furthermore, both molecular docking and molecular dynamics simulations (for 150 ns) were performed to investigate their mechanism of action as potential CBSIs and give more insights into the behavior of the examined candidates within the ß-tubulin subunit of the CBS. On the other hand, in silico ADMET studies were carried out to assess the pharmacokinetic features, drug/lead likeness, and toxicity parameters of the newly synthesized derivatives. Finally, to anticipate the possible changes in the antimitotic activities upon future structural modifications of the investigated compounds, a structure-activity relationship study (SAR) was accomplished.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Animais , Antineoplásicos/química , Sítios de Ligação , Células CACO-2 , Proliferação de Células , Colchicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
16.
J Enzyme Inhib Med Chem ; 37(1): 299-314, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34894955

RESUMO

This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , DNA/química , Desenho de Fármacos , Simulação de Acoplamento Molecular , Ftalazinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ftalazinas/síntese química , Ftalazinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
17.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235247

RESUMO

In this study, a series of coumarin derivatives, either alone or as hybrids with cinnamic acid, were synthesized and evaluated for their cytotoxicity against a panel of cancer cells using the MTT assay. Then, the most active compounds were inspected for their mechanism of cytotoxicity by cell-cycle analysis, RT-PCR, DNA fragmentation, and Western blotting techniques. Cytotoxic results showed that compound (4) had a significant cytotoxic effect against HL60 cells (IC50 = 8.09 µM), while compound (8b) had a noticeable activity against HepG2 cells (IC50 = 13.14 µM). Compounds (4) and (8b) mediated their cytotoxicity via PI3K/AKT pathway inhibition. These results were assured by molecular docking studies. These results support further exploratory research focusing on the therapeutic activity of coumarin derivatives as cytotoxic agents.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Apoptose , Cumarínicos/farmacologia , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
18.
Molecules ; 27(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234842

RESUMO

Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited the highest phenolic content (74.29 mg GAE/gm) as well as the best in vitro antioxidant activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FEAP), and 1,1-diphenyl-2-picrylhyazyl (DPPH) scavenging assays compared with ascorbic acid. Phenolic fractions of the crude extracts of different parts were separated and identified using high-performance liquid chromatography HPLC-DAD analysis. The silver nanoparticles of these phenolic fractions were established and tested for their cytotoxicity and apoptotic activity. Results showed that silver nanoparticles of a polyphenolic fraction of flower extract (Nano-TP/Flowers) exhibited potent cytotoxicity against prostate (PC-3) and lung (A549) cancer cell lines with IC50 values of 0.85 µg/mL and 0.94 µg/mL, respectively, compared with doxorubicin as a standard. For apoptosis-induction, Nano-TP/Flowers exhibited apoptosis in PC-3 with a higher ratio than in A549 cells. It induced total prostate apoptotic cell death by 227-fold change while it induced apoptosis in A549 cells by 15.6-fold change. Nano-TP/Flowers upregulated both pro-apoptotic markers and downregulated the antiapoptotic genes using RT-PCR. Hence, this extract may serve as a promising source for anti-prostate cancer candidates.


Assuntos
Cynara scolymus , Nanopartículas Metálicas , Neoplasias , Antioxidantes/química , Apoptose , Ácido Ascórbico , Linhagem Celular , Cynara scolymus/química , Doxorrubicina , Inflorescência/química , Fenóis/química , Extratos Vegetais/química , Polifenóis/farmacologia , Prata
19.
Molecules ; 27(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35807354

RESUMO

Medicinal plants are widely used in folk medicine to treat various diseases. Thonningia sanguinea Vahl is widespread in African traditional medicine, and exhibits antioxidant, antibacterial, antiviral, and anticancer activities. T. sanguinea is a source of phytomedicinal agents that have previously been isolated and structurally elucidated. Herein, gas chromatography combined with tandem mass spectrometry (GC-MS/MS) was used to quantify epipinoresinol, ß-sitosterol, eriodictyol, betulinic acid, and secoisolariciresinol contents in the methanolic crude extract and its ethyl acetate fraction for the first time. The ethyl acetate fraction was rich in epipinoresinol, eriodictyol, and secoisolariciresinol at concentrations of 2.3, 3.9, and 2.4 mg/g of dry extract, respectively. The binding interactions of these compounds with the epidermal growth factor receptor (EGFR) were computed using a molecular docking study. The results revealed that the highest binding affinities for the EGFR signaling pathway were attributed to eriodictyol and secoisolariciresinol, with good binding energies of -19.93 and -16.63 Kcal/mol, respectively. These compounds formed good interactions with the key amino acid Met 769 as the co-crystallized ligand. So, the ethyl acetate fraction of T. sanguinea is a promising adjuvant therapy in cancer treatments.


Assuntos
Balanophoraceae , Espectrometria de Massas em Tandem , Acetatos , Butileno Glicóis , Receptores ErbB , Flavanonas , Cromatografia Gasosa-Espectrometria de Massas , Lignanas , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos , Extratos Vegetais/química , Sitosteroides , Ácido Betulínico
20.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500372

RESUMO

Novel semisynthetic coumarin derivatives were synthesized to be developed as chemotherapeutic anticancer agents through topoisomerase II, VEGFR2 inhibition that leads to apoptotic cancer cell death. The coumarin amino acids and dipeptides derivatives were prepared by the reaction of coumarin-3-carboxylic acid with amino acid methyl esters following the N,N-dicyclohexylcarbodiimide (DCC) method and 1-hydroxy-benzotriazole (HOBt), as coupling reagents. The synthesized compounds were screened towards VEGFR2, and topoisomerase IIα proteins to highlight their binding affinities and virtual mechanism of binding. Interestingly, compounds 4k (Tyr) and 6c (ß-Ala-L-Met) shared the activity towards the three proteins by forming the same interactions with the key amino acids, such as the co-crystallized ligands. Both compounds 4k and 6c exhibited potent cytotoxic activities against MCF-7 cells with IC50 values of 4.98 and 5.85 µM, respectively causing cell death by 97.82 and 97.35%, respectively. Validating the molecular docking studies, both compounds demonstrated promising VEGFR-2 inhibition with IC50 values of 23.6 and 34.2 µM, compared to Sorafenib (30 µM) and topoisomerase-II inhibition with IC50 values of 4.1 and 8.6 µM compared to Doxorubicin (9.65 µM). Hence, these two promising compounds could be further tested as effective and selective target-oriented active agents against cancer.


Assuntos
Antineoplásicos , DNA Topoisomerases Tipo II , Humanos , DNA Topoisomerases Tipo II/metabolismo , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Antineoplásicos/química , Cumarínicos/farmacologia , Aminoácidos/farmacologia , Estrutura Molecular , Proliferação de Células , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA