Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396687

RESUMO

The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Estresse Oxidativo/fisiologia , Metabolismo Energético
2.
Artigo em Inglês | MEDLINE | ID: mdl-37638996

RESUMO

The author identified the genes and proteins of human enzymes involved in the biosynthesis of catecholamines (dopamine, norepinephrine, epinephrine) and tetrahydrobiopterin (BH4): tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AADC), dopamine ß-hydroxylase (DBH), phenylethanolamine N-methyltransferase (PNMT), and GTP cyclohydrolase I (GCH1). In Parkinson's disease (PD), the activities and levels of mRNA and protein of all catecholamine-synthesizing enzymes are decreased, especially in dopamine neurons in the substantia nigra. Hereditary GCH1 deficiency results in reductions in the levels of BH4 and the activities of TH, causing decreases in dopamine levels. Severe deficiencies in GCH1 or TH cause severe decreases in dopamine levels leading to severe neurological symptoms, whereas mild decreases in TH activity in mild GCH1 deficiency or in mild TH deficiency result in only modest reductions in dopamine levels and symptoms of DOPA-responsive dystonia (DRD, Segawa disease) or juvenile Parkinsonism. DRD is a treatable disease and small doses of L-DOPA can halt progression. The death of dopamine neurons in PD in the substantia nigra may be related to (i) inflammatory effect of extra neuronal neuromelanin, (ii) inflammatory cytokines which are produced by activated microglia, (iii) decreased levels of BDNF, and/or (iv) increased levels of apoptosis-related factors. This review also discusses progress in gene therapies for the treatment of PD, and of GCH1, TH and AADC deficiencies, by transfection of TH, AADC, and GCH1 via adeno-associated virus (AAV) vectors.

3.
J Neural Transm (Vienna) ; 130(5): 627-646, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37062012

RESUMO

Since the description of some peculiar symptoms by James Parkinson in 1817, attempts have been made to define its cause or at least to enlighten the pathology of "Parkinson's disease (PD)." The vast majority of PD subtypes and most cases of sporadic PD share Lewy bodies (LBs) as a characteristic pathological hallmark. However, the processes underlying LBs generation and its causal triggers are still unknown. ɑ-Synuclein (ɑ-syn, encoded by the SNCA gene) is a major component of LBs, and SNCA missense mutations or duplications/triplications are causal for rare hereditary forms of PD. Thus, it is imperative to study ɑ-syn protein and its pathology, including oligomerization, fibril formation, aggregation, and spreading mechanisms. Furthermore, there are synergistic effects in the underlying pathogenic mechanisms of PD, and multiple factors-contributing with different ratios-appear to be causal pathological triggers and progression factors. For example, oxidative stress, reduced antioxidative capacity, mitochondrial dysfunction, and proteasomal disturbances have each been suggested to be causal for ɑ-syn fibril formation and aggregation and to contribute to neuroinflammation and neural cell death. Aging is also a major risk factor for PD. Iron, as well as neuromelanin (NM), show age-dependent increases, and iron is significantly increased in the Parkinsonian substantia nigra (SN). Iron-induced pathological mechanisms include changes of the molecular structure of ɑ-syn. However, more recent PD research demonstrates that (i) LBs are detected not only in dopaminergic neurons and glia but in various neurotransmitter systems, (ii) sympathetic nerve fibres degenerate first, and (iii) at least in "brain-first" cases dopaminergic deficiency is evident before pathology induced by iron and NM. These recent findings support that the ɑ-syn/LBs pathology as well as iron- and NM-induced pathology in "brain-first" cases are important facts of PD pathology and via their interaction potentiate the disease process in the SN. As such, multifactorial toxic processes posted on a personal genetic risk are assumed to be causal for the neurodegenerative processes underlying PD. Differences in ratios of multiple factors and their spatiotemporal development, and the fact that common triggers of PD are hard to identify, imply the existence of several phenotypical subtypes, which is supported by arguments from both the "bottom-up/dual-hit" and "brain-first" models. Therapeutic strategies are necessary to avoid single initiation triggers leading to PD.


Assuntos
Doença de Parkinson , Humanos , Corpos de Lewy/metabolismo , Ferro/metabolismo , alfa-Sinucleína/metabolismo , Inflamação/patologia
4.
J Neural Transm (Vienna) ; 130(5): 611-625, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939908

RESUMO

The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson's disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine ß-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Cisteína/metabolismo , Melaninas/metabolismo , Catecolaminas/metabolismo , Norepinefrina/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo
5.
J Neural Transm (Vienna) ; 129(5-6): 805-828, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34889976

RESUMO

Psychotherapies aim to relieve patients from mental distress by guiding them toward healthier attitudes and behaviors. Psychotherapies can differ substantially in concepts and approaches. In this review article, we compare the methods and science of three established psychotherapies: Morita Therapy (MT), which is a 100-year-old method established in Japan; Cognitive Behavioral Therapy (CBT), which-worldwide-has become the major psychotherapy; and Acceptance and Commitment Therapy (ACT), which is a relatively young psychotherapy that shares some characteristics with MT. The neuroscience of psychotherapy as a system is only beginning to be understood, but relatively solid scientific information is available about some of its important aspects such as learning, physical health, and social interactions. On average, psychotherapies work best if combined with pharmacotherapies. This synergy may rely on the drugs helping to "kickstart" the use of neural pathways (behaviors) to which a patient otherwise has poor access. Improved behavior, guided by psychotherapy, can then consolidate these pathways by their continued usage throughout a patient's life.


Assuntos
Terapia de Aceitação e Compromisso , Terapia Cognitivo-Comportamental , Idoso de 80 Anos ou mais , Terapia Cognitivo-Comportamental/métodos , Humanos , Aprendizagem , Vias Neurais , Psicoterapia/métodos
6.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35456994

RESUMO

Parkinson's disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer's disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Dopamina/metabolismo , Humanos , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
7.
J Neural Transm (Vienna) ; 127(2): 277, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31989267

RESUMO

The original version of this article unfortunately contained a mistake. The year in the Acknowledgements section should be "1963" not "1993".

8.
J Neural Transm (Vienna) ; 127(2): 273-276, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31807951

RESUMO

Cognitive behavioral therapy (CBT) for depression and anxiety, established since the 1960s in the USA, and now in Europe, and all over the world has been found to be effective for treating depression in Parkinson's disease (PD). CBT is further developed to acceptance and commitment therapy (ACT) in Europe and the USA. The neural mechanism of CBT or ACT is still under investigation. In Japan, Morita therapy, a psychotherapy founded in 1919 by Masatake (Shoma) Morita, has been used for common mental problems such as anxiety and depression, but rarely for the psychological symptoms in PD. Morita Therapy is in sharp contrast to western CBT in teaching that undesired mental symptoms such as anxiety and depression are natural features of human emotion in health and disease rather than something to control or eliminate, but it is speculated to be similar to ACT in the approach to acceptance but not elimination of mental symptoms. I speculate that the neural basis might be similar in CBT, ACT, and Morita Therapy. In this commentary, a hypothesis is proposed that CBT, ACT, as well as Morita Therapy might be effective for the treatment of the psychological symptoms such as anxiety and depression in PD and in other mental and physical diseases, probably by similar neural mechanisms in the brain.


Assuntos
Sintomas Comportamentais/terapia , Terapia Cognitivo-Comportamental , Doença de Parkinson/terapia , Processos Psicoterapêuticos , Terapia de Aceitação e Compromisso/métodos , Adulto , Terapia Cognitivo-Comportamental/métodos , Humanos
9.
J Neural Transm (Vienna) ; 127(12): 1631-1640, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32778969

RESUMO

5'-Nucleotidase domain-containing protein 2 (NT5DC2) has been revealed by genome-wide association studies (GWAS) as a gene implicated in neuropsychiatric disorders related to the abnormality of dopamine (DA) activity in the brain. Based on its amino acid sequence, NT5DC2 is assumed to be a member of the family of haloacid dehalogenase-type phosphatases; although there is no information about its function and structural conformation. We recently reported that NT5DC2 binds to tyrosine hydroxylase (TH) and that the down-regulation of NT5DC2 tended to increase DA synthesis. In this study, we investigated whether NT5DC2 could regulate the catalytic activity of TH, which converts tyrosine to DOPA, because the phosphorylation level of TH, controlled by protein kinases and phosphatases, is well known to regulate its catalytic activity. The down-regulation of NT5DC2 by siRNA increased mainly DOPA synthesis by TH in PC12D cells, although this down-regulation tended to increase the conversion of DOPA to DA by aromatic L-amino acid decarboxylase. The increased DOPA synthesis should be attributed to the catalytic activity of TH controlled by its phosphorylation, because Western blot analysis revealed that the down-regulation of NT5DC2 tended to increase the level of TH phosphorylated at its Ser residues, but not that of the TH protein. Moreover, the induction of kinase activity by forskolin markedly potentiated the phosphorylation of TH at its Ser40 in PC12D cells having down-regulated NT5DC2. Immunocytochemical analysis of PC12D cells demonstrated that NT5DC2, TH protein, and TH phosphorylated at its Ser40 were predominantly localized in the cytoplasm and that the localization of NT5DC2 and TH proteins partially overlapped. Collectively, our results indicate that NT5DC2 could work to inhibit the DOPA synthesis by decreasing the phosphorylation of TH at its Ser40. We propose that NT5DC2 might decrease this phosphorylation of TH by promoting dephosphorylation or by inhibiting kinase activity.


Assuntos
Estudo de Associação Genômica Ampla , Tirosina 3-Mono-Oxigenase , Dopamina , Fosforilação , Tirosina , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Biochem Biophys Res Commun ; 516(4): 1060-1065, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31279527

RESUMO

Tyrosine hydroxylase (TH), which catalyzes the conversion of l-tyrosine to l-DOPA, is the rate-limiting enzyme in the biosynthesis of catecholamines. It is well known that both α-synuclein and 14-3-3 protein family members bind to the TH molecule and regulate phosphorylation of its N-terminus by kinases to control the catalytic activity. In this present study we investigated whether other proteins aside from these 2 proteins might also bind to TH molecules. Nano-LC-MS/MS analysis revealed that 5'-nucleotidase domain-containing protein 2 (NT5DC2), belonging to a family of haloacid dehalogenase-type (HAD) phosphatases, was detected in the immunoprecipitate of PC12D cell lysates that had been reacted with Dynabeads protein G-anti-TH antibody conjugate. Surprisingly, NT5DC2 had already been revealed by Genome-Wide Association Studies (GWAS) as a gene implicated in neuropsychiatric disorders such as schizophrenia, bipolar disorder, which are diseases related to the abnormality of dopamine activity in the brain, although the role that NT5DC2 plays in these diseases remains unknown. Therefore, we investigated the effect of NT5DC2 on the TH molecule. The down-regulation of NT5DC2 by siRNA increased the synthesis of catecholamines (dopamine, noradrenaline, and adrenaline) in PC12D cells. These increases might be attributed to the catalytic activity of TH and not to the intracellular stability of TH, because the intracellular content of TH assessed by Western blotting was not changed by the down-regulation of NT5DC2. Collectively, our results indicate that NT5DC2 inhibited the synthesis of dopamine by decreasing the enzymatic activity of TH.


Assuntos
5'-Nucleotidase/metabolismo , Catecolaminas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , 5'-Nucleotidase/genética , Animais , Linhagem Celular , Cromatografia Líquida , Regulação para Baixo , Células PC12 , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Espectrometria de Massas em Tandem
11.
J Neural Transm (Vienna) ; 126(4): 397-409, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29995172

RESUMO

Parkinson's disease (PD) is an aging-related movement disorder mainly caused by a deficiency of neurotransmitter dopamine (DA) in the striatum of the brain and is considered to be due to progressive degeneration of nigro-striatal DA neurons. Most PD is sporadic without family history (sPD), and there are only a few percent of cases of young-onset familial PD (fPD, PARKs) with the chromosomal locations and the genes identified. Tyrosine hydroxylase (TH), tetrahydrobiopterin (BH4)-dependent and iron-containing monooxygenase, catalyzes the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA), which is the initial and rate-limiting step in the biosynthesis of catecholamines (DA, noradrenaline, and adrenaline). PD affects specifically TH-containing catecholamine neurons. The most marked neurodegeneration in patients with DA deficiency is observed in the nigro-striatal DA neurons, which contain abundant TH. Accordingly, TH has been speculated to play some important roles in the pathophysiology in PD. However, this decrease in TH is thought to be secondary due to neurodegeneration of DA neurons caused by some as yet unidentified genetic and environmental factors, and thus, TH deficiency may not play a direct role in PD. This manuscript provides an overview of the role of human TH in the pathophysiology of PD, covering the following aspects: (1) structures of the gene and protein of human TH in relation to PD; (2) similarity and dissimilarity between the phenotypes of aging-related sPD and those of young-onset fPD or DOPA-responsive dystonia due to DA deficiency in the striatum with decreased TH activity caused by mutations in either the TH gene or GTP cyclohydrolase I (GCH1) gene; and (3) genetic variants of the TH gene (polymorphisms, rare variants, and mutations) in PD, as discovered recently by advanced genome analysis.


Assuntos
Doença de Parkinson/enzimologia , Tirosina 3-Mono-Oxigenase/metabolismo , Humanos , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Tirosina 3-Mono-Oxigenase/genética
12.
J Neural Transm (Vienna) ; 124(6): 739-744, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27503084

RESUMO

Prolyl oligopeptidase (also named prolyl endopeptidase; PREP) hydrolyzes the Pro-Xaa bonds of biologically active oligopeptides on their carboxyl side. In 1987, we detected PREP activity in human cerebrospinal fluid (CSF) using highly sensitive liquid chromatography-fluorometry with succinyl-Gly-Pro-4-methyl-coumarin amide as a new synthetic substrate, and found a marked decrease in its activity in the cerebrospinal fluid (CSF) from patients with Parkinson's disease (PD) as compared with its level in control patients without neurological diseases. In 2013, Hannula et al. found co-localization of PREP with α-synuclein in the postmortem PD brain. Several recent studies also suggest that the level of PREP in the brain of PD patients may be related to dopamine (DA) cell death via promotion of α-synuclein oligomerization and that inhibitors of PREP may play a neuroprotective role in PD. Although the relationship between another family of prolyl oligopeptidase enzymes, dipeptidyl peptidase II (DPP II) and dipeptidyl peptidase IV (DPP IV), and α-synuclein in the PD brain is not yet clear, we found that the DPP II activity/DPP IV activity ratio in the CSF was significantly increased in PD patients. This review discusses the possibility of PREP as well as the DPP II/DPP IV ratio in the CSF as potential biomarkers of PD.


Assuntos
Dipeptidil Peptidase 4/líquido cefalorraquidiano , Dipeptidil Peptidases e Tripeptidil Peptidases/líquido cefalorraquidiano , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/enzimologia , Serina Endopeptidases/líquido cefalorraquidiano , Animais , Biomarcadores/líquido cefalorraquidiano , Humanos , Prolil Oligopeptidases
14.
Biochem Biophys Res Commun ; 472(4): 598-602, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969276

RESUMO

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, and its stability is a fundamental factor to maintain the level of the catecholamines in cells. However, the intracellular stability determined by the degradation pathway remains unknown. In this study, we investigated the mechanism by which phosphorylation of TH affected the proteasome pathway. The inhibition of proteasomes by MG-132 increased the percentage of TH molecules phosphorylated at their Ser19, Ser31 and/or Ser40 among the total TH proteins to about 70% in PC12D cells over a 24-hr period; although the percentage of phosphorylated TH molecules was about 20% under basal conditions. Moreover, the inhibition of proteasomes by epoxomicin with high specificity increased primarily the quantity of TH molecules phosphorylated at their Ser19. The phosphorylation of Ser19 potentiated Ser40 phosphorylation in cells by a process known as hierarchical phosphorylation. Therefore, the proteasome inhibition might result in an increase in the levels of all 3 phosphorylated TH forms, thus complicating interpretation of data. Conversely, activation of proteasome degradation by IU-1, which is an inhibitor for the deubiquitinating activity of USP14, decreased only the quantity of TH molecules phosphorylated at their Ser19, although it did not decrease that of TH phosphorylated at its Ser31 and Ser40 or that of TH molecules. These results suggest that the phosphorylation of Ser19 in the N-terminal portion of TH is critical as a trigger for the degradation of this enzyme by the ubiquitin-proteasome pathway.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Células PC12 , Fosforilação , Proteólise , Ratos , Transdução de Sinais , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitinação
15.
J Neural Transm (Vienna) ; 123(11): 1255-1278, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27491309

RESUMO

Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine ß-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.


Assuntos
Antiparkinsonianos/uso terapêutico , Biopterinas/análogos & derivados , Terapia Genética , Doença de Parkinson/enzimologia , Doença de Parkinson/terapia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Biopterinas/genética , Biopterinas/metabolismo , Humanos , Doença de Parkinson/genética , Tirosina 3-Mono-Oxigenase/genética
16.
J Neural Transm (Vienna) ; 122(2): 187-99, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24919883

RESUMO

We previously reported that an optimal dose of lipopolysaccharide (LPS) markedly extends the lifespan of murine primary-cultured microglia by suppressing cell death pathways. In this study, we investigated the effects of LPS pretreatment on UV light-induced apoptosis of cells from the microglial cell line BV-2. More than half of BV-2 cells were apoptotic, and procaspase-3 was cleaved into its active form at 3 h of UV irradiation. In contrast, in BV-2 cells treated with LPS for 24 h, UV irradiation caused neither apoptosis nor procaspase-3 cleavage. LPS treatment arrested the cell cycle in G1 phase and upregulated cyclin-dependent kinase inhibitor p21(Waf1/Cip1) and growth arrest and DNA damage-inducible (GADD) 45α in BV-2 cells. When p21(Waf1/Cip1) and GADD45α were knocked down by small interfering RNA, procaspase-3 was cleaved into its active form to induce apoptosis. Our findings suggest that LPS inhibits UV-induced apoptosis in BV-2 cells through arrest of the cell cycle in G1 phase by upregulation of p21(Waf1/Cip1) and GADD45α. Excessive activation of microglia may play a critical role in the exacerbation of neurodegeneration, therefore, normalizing the precise regulation of apoptosis may be a new strategy to prevent the deterioration caused by neurodegenerative disorders.


Assuntos
Apoptose/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Raios Ultravioleta , Animais , Apoptose/efeitos da radiação , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Citometria de Fluxo , Fase G1/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Microglia/efeitos da radiação , Análise de Sequência com Séries de Oligonucleotídeos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro , RNA Interferente Pequeno/farmacologia , Fatores de Tempo
17.
J Neural Transm (Vienna) ; 122(6): 757-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25504008

RESUMO

We previously showed that aripiprazole increases intracellular NADPH and glucose-6-phosphate dehydrogenase mRNA in PC12 cells. Aripiprazole presumably activates a system that concurrently detoxifies reactive oxygen species and replenishes NADPH. Nrf2, a master transcriptional regulator of redox homeostasis genes, also activates the pentose phosphate pathway, including NADPH production. Therefore, our aim was to determine whether aripiprazole activates Nrf2 in PC12 cells. Aripiprazole increased mRNA expression of Nrf2-dependent genes (NAD(P)H-quinone oxidoreductase-1, Nqo1; heme oxygenase-1, HO1; and glutamate-cysteine ligase catalytic subunit) and protein expression of Nqo1 and HO1 in these cells (p < 0.05). To maintain increased Nrf2 activity, it is necessary to inhibit Nrf2 degradation; this is done by causing Nrf2 to dissociate from Keap1 or ß-TrCP. However, in aripiprazole-treated cells, the relative amount of Nrf2 anchored to Keap1 or ß-TrCP was unaffected and Nrf2 in the nuclear fraction decreased (p < 0.05). Aripiprazole did not affect phosphorylation of Nrf2 at Ser40 and decreased the relative amount of acetylated Nrf2 (p < 0.05). The increase in Nqo1 and HO1 in aripiprazole-treated cells cannot be explained by the canonical Nrf2-degrading pathways. Further experiments are needed to determine the biochemical mechanisms underlying the aripiprazole-induced increase in these enzymes.


Assuntos
Antipsicóticos/farmacologia , Aripiprazol/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Acetilação/efeitos dos fármacos , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/enzimologia , Glutamato-Cisteína Ligase/metabolismo , Peróxido de Hidrogênio/toxicidade , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , Proteínas Contendo Repetições de beta-Transducina/metabolismo
18.
J Neural Transm (Vienna) ; 121(1): 91-103, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23934573

RESUMO

In aripiprazole-treated PC12 cells, we previously showed that the mitochondrial membrane potential (Δψm) was rather increased in spite of lowered cytochrome c oxidase activity. To address these inconsistent results, we focused the NADPH generation by glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway (PPP), to titrate reactive oxygen species (ROS) that results in the Δψm maintenance. G6PD may be also involved in another inconsistent result of lowered intracellular lactate level in aripiprazole-treated PC12 cells, because PPP competes glucose-6-phosphate with the glycolytic pathway, resulting in the downregulation of glycolysis. Therefore, we assayed intracellular amounts of NADPH, ROS, and the activities of the enzymes generating or consuming NADPH (G6PD, NADP(+)-dependent isocitrate dehydrogenase, NADP(+)-dependent malic enzyme, glutathione reductase, and NADPH oxidase [NOX]) and estimated glycolysis in 50 µM aripiprazole-, clozapine-, and haloperidol-treated PC12 cells. NADPH levels were enhanced only in aripiprazole-treated ones. Only haloperidol increased ROS. However, the enzyme activities did not show significant changes toward enhancing NADPH level except for the aripiprazole-induced decrease in NOX activity. Thus, the lowered NOX activity could have contributed to the aripiprazole-induced increase in the NADPH level by lowering ROS generation, resulting in maintained Δψm. Although the aforementioned assumption was invalid, the ratio of fructose-1,6-bisphosphate to fructose-6-phosphate was decreased by all antipsychotics examined. Pyruvate kinase activity was enhanced only by aripiprazole. In summary, these observations indicate that aripiprazole possibly possesses the pharmacological superiority to clozapine and haloperidol in the ROS generation and the adjustment of glycolytic pathway.


Assuntos
Antipsicóticos/farmacologia , NADPH Oxidases/metabolismo , NADP/metabolismo , Neurônios/efeitos dos fármacos , Piperazinas/farmacologia , Quinolonas/farmacologia , Animais , Aripiprazol , Neurônios/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
19.
Fujita Med J ; 10(1): 1-7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332776

RESUMO

Distinguished Professor Emeritus Tsuneko Okazaki is a hero of science. Together with her late husband, Professor Reiji Okazaki, she discovered that DNA replication involves the discontinuous synthesis of the DNA lagging strand by intermediates of, what is now called, "Okazaki fragments." She has been a pioneer for women in science and, in 1983, became the first female full Professor at Nagoya University. From 1997 to 2012, she was a full Professor and later a Visiting Professor at Fujita Health University, and this review zooms in on that period. Besides a summary of her career, this article also includes personal memories of researchers who worked with Professor Okazaki.

20.
J Neural Transm (Vienna) ; 120(1): 49-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22644539

RESUMO

Postmortem brain biochemistry has revealed that the main symptom of movement disorder in Parkinson's disease (PD) is caused by a deficiency in dopamine (DA) at the nerve terminals of degenerating nigro-striatal DA neurons in the striatum. Since tyrosine hydroxylase (TH) is the rate-limiting enzyme for the biosynthesis of DA, TH may play an important role in the disease process of PD. DA regulated by TH activity is thought to interact with α-synuclein protein, which results in intracellular aggregates called Lewy bodies and causes apoptotic cell death during the aging process. Human TH has several isoforms produced by alternative mRNA splicing, which may affect activation by phosphorylation of serine residues in the N-terminus of TH. The activity and protein level of TH are decreased to cause DA deficiency in the striatum in PD. However, the homo-specific activity (activity/enzyme protein) of TH is increased. This increase in TH homo-specific activity suggests activation by increased phosphorylation at the N-terminus of the TH protein for a compensatory increase in DA synthesis. We recently found that phosphorylation of the N-terminal portion of TH triggers proteasomal degradation of the enzyme to increase TH turnover. We propose a hypothesis that this compensatory activation of TH by phosphorylation in the remaining DA neurons may contribute to a further decrease in TH protein and activity in DA neurons in PD, causing a vicious circle of decreasing TH activity, protein level and DA contents. Furthermore, increased TH homo-specific activity leading to an increase in DA may cause toxic reactive oxygen species in the neurons to promote neurodegeneration.


Assuntos
Encéfalo/enzimologia , Doença de Parkinson/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Mudanças Depois da Morte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA