Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293193

RESUMO

The primary role of Notch is to specify cellular identities, whereby the cells respond to amazingly small changes in Notch signalling activity. Hence, dosage of Notch components is crucial to regulation. Central to Notch signal transduction are CSL proteins: together with respective cofactors, they mediate the activation or the silencing of Notch target genes. CSL proteins are extremely similar amongst species regarding sequence and structure. We noticed that the fly homologue suppressor of hairless (Su(H)) is stabilised in transcription complexes. Using specific transgenic fly lines and HeLa RBPJKO cells we provide evidence that Su(H) is subjected to proteasomal degradation with a half-life of about two hours if not protected by binding to co-repressor hairless or co-activator Notch. Moreover, Su(H) stability is controlled by MAPK-dependent phosphorylation, matching earlier data for RBPJ in human cells. The homologous murine and human RBPJ proteins, however, are largely resistant to degradation in our system. Mutating presumptive protein contact sites, however, sensitised RBPJ for proteolysis. Overall, our data highlight the similarities in the regulation of CSL protein stability across species and imply that turnover of CSL proteins may be a conserved means of regulating Notch signalling output directly at the level of transcription.


Assuntos
Proteínas de Drosophila , Humanos , Animais , Camundongos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas Correpressoras/metabolismo , Receptores Notch/metabolismo , Fosforilação , Proteínas Repressoras/metabolismo , Ligação Proteica
2.
Hereditas ; 158(1): 11, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33775255

RESUMO

CSL transcription factors are central to signal transduction in the highly conserved Notch signaling pathway. CSL acts as a molecular switch: depending on the cofactors recruited, CSL induces either activation or repression of Notch target genes. Unexpectedly, CSL depends on its cofactors for nuclear entry, despite its role as gene regulator. In Drosophila, the CSL homologue Suppressor of Hairless (Su(H)), recruits Hairless (H) for repressor complex assembly, and eventually for nuclear import. We recently found that Su(H) is subjected to a dynamic nucleo-cytoplasmic shuttling, thereby strictly following H subcellular distribution. Hence, regulation of nuclear availability of Su(H) by H may represent a new layer of control of Notch signaling activity. Here we extended this work on the murine CSL homologue RBPJ. Using a 'murinized' fly model bearing RBPJwt in place of Su(H) at the endogenous locus we demonstrate that RBPJ protein likewise follows H subcellular distribution. For example, overexpression of a H*NLS3 protein variant defective of nuclear import resulted in a cytosolic localization of RBPJ protein, whereas the overexpression of a H*NES protein variant defective in the nuclear export signal caused the accumulation of RBPJ protein in the nucleus. Evidently, RBPJ is exported from the nucleus as well. Overall these data demonstrate that in our fly model, RBPJ is subjected to H-mediated nucleo-cytoplasmic shuttling as is Su(H). These data raise the possibility that nuclear availability of mammalian CSL proteins is likewise restricted by cofactors, and may hence present a more general mode of regulating Notch signaling activity.


Assuntos
Proteínas de Drosophila/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteínas Repressoras/genética , Transporte Ativo do Núcleo Celular , Animais , Animais Geneticamente Modificados , Citoplasma , Drosophila melanogaster/genética , Camundongos , Receptores Notch/genética , Transdução de Sinais
3.
PLoS Genet ; 13(5): e1006774, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28475577

RESUMO

Cell fate choices during metazoan development are driven by the highly conserved Notch signalling pathway. Notch receptor activation results in release of the Notch intracellular domain (NICD) that acts as transcriptional co-activator of the DNA-binding protein CSL. In the absence of signal, a repressor complex consisting of CSL bound to co-repressors silences Notch target genes. The Drosophila repressor complex contains the fly CSL orthologue Suppressor of Hairless [Su(H)] and Hairless (H). The Su(H)-H crystal structure revealed a large conformational change within Su(H) upon H binding, precluding interactions with NICD. Based on the structure, several sites in Su(H) and H were determined to specifically engage in complex formation. In particular, three mutations in Su(H) were identified that affect interactions with the repressor H but not the activator NICD. To analyse the effects these mutants have on normal fly development, we introduced these mutations into the native Su(H) locus by genome engineering. We show that the three H-binding deficient Su(H) alleles behave similarly. As these mutants lack the ability to form the repressor complex, Notch signalling activity is strongly increased in homozygotes, comparable to a complete loss of H activity. Unexpectedly, we find that the abundance of the three mutant Su(H) protein variants is altered, as is that of wild type Su(H) protein in the absence of H protein. In the presence of NICD, however, Su(H) mutant protein persists. Apparently, Su(H) protein levels depend on the interactions with H as well as with NICD. Based on these results, we propose that in vivo levels of Su(H) protein are stabilised by interactions with transcription-regulator complexes.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Mutação , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Animais , Sítios de Ligação , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Ligação Proteica , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/genética
4.
Hereditas ; 156: 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31889943

RESUMO

BACKGROUND: In Drosophila, the development of the fly eye involves the activity of several, interconnected pathways that first define the presumptive eye field within the eye anlagen, followed by establishment of the dorso-ventral boundary, and the regulation of growth and apoptosis. In Lobe (L) mutant flies, parts of the eye or even the complete eye are absent because the eye field has not been properly defined. Manifold genetic interactions indicate that L influences the activity of several signalling pathways, resulting in a conversion of eye tissue into epidermis, and in the induction of apoptosis. As information on the molecular nature of the L mutation is lacking, the underlying molecular mechanisms are still an enigma. RESULTS: We have identified Protein Kinase D (PKD) as a strong modifier of the L mutant phenotype. PKD belongs to the PKC/CAMK class of Ser/Thr kinases that have been involved in diverse cellular processes including stress resistance and growth. Despite the many roles of PKD, Drosophila PKD null mutants are without apparent phenotype apart from sensitivity to oxidative stress. Here we report an involvement of PKD in eye development in the sensitized genetic background of Lobe. Absence of PKD strongly enhanced the dominant eye defects of heterozygous L 2 flies, and decreased their viability. Moreover, eye-specific overexpression of an activated isoform of PKD considerably ameliorated the dominant L 2 phenotype. This genetic interaction was not allele specific but similarly seen with three additional, weaker L alleles (L 1 , L 5 , L G ), demonstrating its specificity. CONCLUSIONS: We propose that PKD-mediated phosphorylation is involved in underlying processes causing the L phenotype, i.e. in the regulation of growth, the epidermal transformation of eye tissue and apoptosis, respectively.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Epistasia Genética , Proteínas do Olho/genética , Olho/embriologia , Olho/metabolismo , Mutação , Proteína Quinase C/genética , Animais , Olho/ultraestrutura , Estudos de Associação Genética , Organogênese/genética , Fenótipo
5.
Hereditas ; 155: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202398

RESUMO

BACKGROUND: DNA damage generally results in the activation of ATM/ATR kinases and the downstream checkpoint kinases Chk1/Chk2. In Drosophila melanogaster, the ATR homologue meiotic 41 (mei-41) is pivotal to DNA damage repair and cell cycle checkpoint signalling. Although various mei-41 mutant alleles have been analyzed in the past, no gain-of-function allele is yet available. To fill this gap, we have generated transgenic flies allowing temporal and tissue-specific induction of mei-41. RESULTS: Overexpression of mei-41 in wing and eye anlagen affects proliferation and a G2/M checkpoint even in the absence of genomic stress. Similar consequences were observed following the overexpression of the downstream kinase Grapes (Grp) but not of Loki (Lok), encoding the respective Drosophila Chk1 and Chk2 homologues, in agreement with their previously reported activities. Moreover, we show that irradiation induced cell cycle arrest was prolonged in the presence of ectopic mei-41 expression. Similar to irradiation stress, mei-41 triggered the occurrence of a slower migrating form of Grp, implying specific phosphorylation of Grp in response to either signal. Using a p53R-GFP biosensor, we further show that overexpression of mei-41 was sufficient to elicit a robust p53 activation in vivo. CONCLUSION: We conclude that overexpression of the Drosophila ATR homologue mei-41 elicits an effectual DNA damage response irrespective of irradiation.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Animais Geneticamente Modificados , Divisão Celular , Drosophila melanogaster/efeitos da radiação , Fase G2
6.
PLoS Genet ; 11(8): e1005440, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26274446

RESUMO

In multicellular organisms, growth and proliferation is adjusted to nutritional conditions by a complex signaling network. The Insulin receptor/target of rapamycin (InR/TOR) signaling cascade plays a pivotal role in nutrient dependent growth regulation in Drosophila and mammals alike. Here we identify Cyclin G (CycG) as a regulator of growth and metabolism in Drosophila. CycG mutants have a reduced body size and weight and show signs of starvation accompanied by a disturbed fat metabolism. InR/TOR signaling activity is impaired in cycG mutants, combined with a reduced phosphorylation status of the kinase Akt1 and the downstream factors S6-kinase and eukaryotic translation initiation factor 4E binding protein (4E-BP). Moreover, the expression and accumulation of Drosophila insulin like peptides (dILPs) is disturbed in cycG mutant brains. Using a reporter assay, we show that the activity of one of the first effectors of InR signaling, Phosphoinositide 3-kinase (PI3K92E), is unaffected in cycG mutants. However, the metabolic defects and weight loss in cycG mutants were rescued by overexpression of Akt1 specifically in the fat body and by mutants in widerborst (wdb), the B'-subunit of the phosphatase PP2A, known to downregulate Akt1 by dephosphorylation. Together, our data suggest that CycG acts at the level of Akt1 to regulate growth and metabolism via PP2A in Drosophila.


Assuntos
Ciclina G/fisiologia , Drosophila melanogaster/metabolismo , Animais , Peso Corporal , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Corpo Adiposo/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Metabolismo dos Lipídeos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
J Cell Sci ; 125(Pt 22): 5555-63, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22976300

RESUMO

Cyclin G (CycG) belongs to the atypical cyclins, which have diverse cellular functions. The two mammalian CycG genes, CycG1 and CycG2, regulate the cell cycle in response to cell stress. Detailed analyses of the role of the single Drosophila cycG gene have been hampered by the lack of a mutant. We generated a null mutant in the Drosophila cycG gene that is female sterile and produces ventralised eggs. This phenotype is typical of the downregulation of epidermal growth factor receptor (EGFR) signalling during oogenesis. Ventralised eggs are also observed in mutants (for example, mutants of the spindle class) that are defective in meiotic DNA double-strand break repair. Double-strand breaks (DSBs) induce a meiotic checkpoint by activating Mei-41 kinase (the Drosophila ATR homologue), thereby indirectly causing dorsoventral patterning defects. We provide evidence for the role of CycG in meiotic checkpoint control. The increased incidence of DSBs in cycG mutant germaria may reflect inefficient DSB repair. Therefore, the downregulation of Mei-W68 (an endonuclease that induces meiotic DSBs), Mei-41, or Drosophila melanogaster Chk2 (a downstream kinase that initiates the meiotic checkpoint) rescues the cycG mutant eggshell phenotype. In vivo, CycG associates with Rad9 and BRCA2. These two proteins are components of the 9-1-1 complex, which is involved in sensing DSBs and in activating meiotic checkpoint control. Therefore, we propose that CycG has a role in an early step of meiotic recombination repair, thereby affecting EGFR-mediated patterning processes during oogenesis.


Assuntos
Ciclina G/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Meiose/genética , Reparo de DNA por Recombinação/genética , Animais , Padronização Corporal/genética , Ciclina G/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imunoprecipitação , Masculino , Proteínas Mutantes/metabolismo , Mutação/genética , Oócitos/citologia , Oócitos/metabolismo , Ovário/citologia , Ovário/metabolismo , Oviposição/fisiologia , Óvulo/metabolismo , Ligação Proteica/genética , Reprodutibilidade dos Testes
8.
Hereditas ; 151(4-5): 102-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25363277

RESUMO

Cellular differentiation during eumetazoan development is based on highly conserved signalling pathways. Two of them, the Notch and the EGFR signalling pathways, are closely intertwined. We have identified two potential target sites of the Mitogen activated kinase (MAPK), the downstream effector kinase of EGFR, within Hairless (H), the major antagonist of Notch signalling in Drosophila. Assuming that phosphorylation of these sites modulates H activity, a direct influence of EGFR signalling on Notch pathway regulation might be possible. This hypothesis was tested by generating a phospho-deficient and a phospho-mimetic H isoform and by assaying for their biological activity. We first addressed the binding of known H interaction partners Su(H), Gro, CtBP and Pros26.4 which was similar between mutant and wild type H. Next we assayed eye, wing and bristle development which are strongly affected by the overexpression of H due to the inhibition of Notch signalling. Overexpression of the mutant constructs resulted in phenotypes similar to wildtype H overexpression, yet with subtle differences in phenotypic severity. However, large variations suggest that the mutated residues may be critical for the overall structure or stability of H. Albeit of minor impact, EGFR may fine tune Notch signalling via MAPK dependent phosphorylation of H.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases , Fatores de Transcrição/genética , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Fenótipo , Fosforilação , Mutação Puntual , Isoformas de Proteínas/genética , Asas de Animais/crescimento & desenvolvimento
9.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607015

RESUMO

Blood cells in Drosophila serve primarily innate immune responses. Various stressors influence blood cell homeostasis regarding both numbers and the proportion of blood cell types. The principle molecular mechanisms governing hematopoiesis are conserved amongst species and involve major signaling pathways like Notch, Toll, JNK, JAK/Stat or RTK. Albeit signaling pathways generally rely on the activity of protein kinases, their specific contribution to hematopoiesis remains understudied. Here, we assess the role of Serine/Threonine kinases with the potential to phosphorylate the transcription factor Su(H) in crystal cell homeostasis. Su(H) is central to Notch signal transduction, and its inhibition by phosphorylation impedes crystal cell formation. Overall, nearly twenty percent of all Drosophila Serine/Threonine kinases were studied in two assays, global and hemocyte-specific overexpression and downregulation, respectively. Unexpectedly, the majority of kinases influenced crystal cell numbers, albeit only a few were related to hematopoiesis so far. Four kinases appeared essential for crystal cell formation, whereas most kinases restrained crystal cell development. This group comprises all kinase classes, indicative of the complex regulatory network underlying blood cell homeostasis. The rather indiscriminative response we observed opens the possibility that blood cells measure their overall phospho-status as a proxy for stress-signals, and activate an adaptive immune response accordingly.


Assuntos
Proteínas de Drosophila , Proteínas Serina-Treonina Quinases , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Células Sanguíneas/metabolismo , Homeostase , Serina/metabolismo , Treonina/metabolismo
10.
Genes (Basel) ; 15(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790181

RESUMO

Hairless (H) encodes the major antagonist in the Notch signaling pathway, which governs cellular differentiation of various tissues in Drosophila. By binding to the Notch signal transducer Suppressor of Hairless (Su(H)), H assembles repressor complexes onto Notch target genes. Using genome engineering, three new H alleles, HFA, HLLAA and HWA were generated and a phenotypic series was established by several parameters, reflecting the residual H-Su(H) binding capacity. Occasionally, homozygous HWA flies develop to adulthood. They were compared with the likewise semi-viable HNN allele affecting H-Su(H) nuclear entry. The H homozygotes were short-lived, sterile and flightless, yet showed largely normal expression of several mitochondrial genes. Typical for H mutants, both HWA and HNN homozygous alleles displayed strong defects in wing venation and mechano-sensory bristle development. Strikingly, however, HWA displayed only a loss of bristles, whereas bristle organs of HNN flies showed a complete shaft-to-socket transformation. Apparently, the impact of HWA is restricted to lateral inhibition, whereas that of HNN also affects the respective cell type specification. Notably, reduction in Su(H) gene dosage only suppressed the HNN bristle phenotype, but amplified that of HWA. We interpret these differences as to the role of H regarding Su(H) stability and availability.


Assuntos
Alelos , Proteínas de Drosophila , Drosophila melanogaster , Asas de Animais , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética
11.
J Neurosci ; 32(43): 15193-204, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23100440

RESUMO

Neurobeachin (Nbea) is implicated in vesicle trafficking in the regulatory secretory pathway, but details on its molecular function are currently unknown. We have used Drosophila melanogaster mutants for rugose (rg), the Drosophila homolog of Nbea, to further elucidate the function of this multidomain protein. Rg is expressed in a granular pattern reminiscent of the Golgi network in neuronal cell bodies and colocalizes with transgenic Nbea, suggesting a function in secretory regulation. In contrast to Nbea(-/-) mice, rg null mutants are viable and fertile and exhibit aberrant associative odor learning, changes in gross brain morphology, and synaptic architecture as determined at the larval neuromuscular junction. At the same time, basal synaptic transmission is essentially unaffected, suggesting that structural and functional aspects are separable. Rg phenotypes can be rescued by a Drosophila rg+ transgene, whereas a mouse Nbea transgene rescues aversive odor learning and synaptic architecture; it fails to rescue brain morphology and appetitive odor learning. This dissociation between the functional redundancy of either the mouse or the fly transgene suggests that their complex composition of numerous functional and highly conserved domains support independent functions. We propose that the detailed compendium of phenotypes exhibited by the Drosophila rg null mutant provided here will serve as a test bed for dissecting the different functional domains of BEACH (for beige and human Chediak-Higashi syndrome) proteins, such as Rugose, mouse Nbea, or Nbea orthologs in other species, such as human.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Aprendizagem por Associação/fisiologia , Encéfalo/citologia , Proteínas de Drosophila/fisiologia , Sinapses/fisiologia , Proteínas de Ancoragem à Quinase A/deficiência , Proteínas de Ancoragem à Quinase A/genética , Análise de Variância , Animais , Animais Geneticamente Modificados , Encéfalo/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Peroxidase do Rábano Silvestre/metabolismo , Masculino , Potenciais da Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/citologia , Junção Neuromuscular/genética , Neurônios/citologia , Odorantes , Neurônios Receptores Olfatórios/citologia , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Sinapses/genética
12.
EMBO Rep ; 12(6): 527-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21525957

RESUMO

By using mass spectrometry, we have identified Ser 402 as a new phosphorylation site within the catalytic domain of human slingshot 1 (SSH1). Phosphorylation at this site inhibits substrate binding and, thus, phosphatase activity in vitro, resulting in enrichment of phosphorylated cofilin in monolayer cell culture. We further demonstrate that protein kinase D (PKD) is upstream from Ser 402 phosphorylation. Accordingly, expression of active PKD in Drosophila phenotypically mimics the loss of SSH activity by inducing accumulation of phosphorylated cofilin and filamentous actin. We thus identify a universal mechanism by which PKD controls SSH1 phosphatase activity.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Serina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Ativação Enzimática/genética , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/genética , Fosforilação , Ligação Proteica , Proteína Quinase C/química , Proteína Quinase C/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
13.
Genes (Basel) ; 14(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672946

RESUMO

Cellular differentiation relies on the highly conserved Notch signaling pathway. Notch activity induces gene expression changes that are highly sensitive to chromatin landscape. We address Notch gene regulation using Drosophila as a model, focusing on the genetic and molecular interactions between the Notch antagonist Hairless and the histone chaperone Asf1. Earlier work implied that Asf1 promotes the silencing of Notch target genes via Hairless (H). Here, we generate a novel HΔCT allele by genome engineering. Phenotypically, HΔCT behaves as a Hairless gain of function allele in several developmental contexts, indicating that the conserved CT domain of H has an attenuator role under native biological contexts. Using several independent methods to assay protein-protein interactions, we define the sequences of the CT domain that are involved in Hairless-Asf1 binding. Based on previous models, where Asf1 promotes Notch repression via Hairless, a loss of Asf1 binding should reduce Hairless repressive activity. However, tissue-specific Asf1 overexpression phenotypes are increased, not rescued, in the HΔCT background. Counterintuitively, Hairless protein binding mitigates the repressive activity of Asf1 in the context of eye development. These findings highlight the complex connections of Notch repressors and chromatin modulators during Notch target-gene regulation and open the avenue for further investigations.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Proteínas Repressoras/genética , Proteínas de Drosophila/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Alelos , Receptores Notch/genética , Receptores Notch/metabolismo , Drosophila/genética , Cromatina/metabolismo
14.
Hereditas ; 149(5): 186-96, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23121330

RESUMO

In general, cyclins control the cell cycle. Not so the atypical cyclins, which are required for diverse cellular functions such as for genome stability or for the regulation of transcription and translation. The atypical Cyclin G (CycG) gene of Drosophila has been involved in the epigenetic regulation of abdominal segmentation, cell proliferation and growth, based on overexpression and RNAi studies, but detailed analyses were hampered by the lack of a cycG mutant. For further investigations, we subjected the cycG locus to a detailed molecular analysis. Moreover, we studied a cycG null mutant that we recently established. The mutant flies are homozygous viable, however, the mutant females are sterile and produce ventralized eggs. Here we show that this egg phenotype is primarily a consequence of a defective Epidermal Growth Factor Receptor (EGFR) signalling pathway. By using different read outs, we demonstrate that cycG loss is tantamount to lowered EGFR signalling. Inferred from epistasis experiments, we conclude that CycG promotes the Grk signal in the oocyte. Abnormal accumulation but regular secretion of the Grk protein suggests defects of Grk translation in cycG mutants rather than transcriptional regulation. Accordingly, protein accumulation of Vasa, which acts as an oocyte specific translational regulator of Grk in the oocyte is abnormal. We propose a role of cycG in processes that regulate translation of Grk and hence, influence EGFR-mediated patterning processes during oogenesis.


Assuntos
Padronização Corporal , Ciclina G/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Oócitos/crescimento & desenvolvimento , Animais , Cromossomos de Insetos/genética , Cromossomos de Insetos/metabolismo , Ciclina G/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Loci Gênicos , Mutação , Oócitos/citologia , Oócitos/metabolismo , Oogênese , Fenótipo , Biossíntese de Proteínas , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais , Transcrição Gênica , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo
15.
Hereditas ; 148(3): 77-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21756252

RESUMO

Notch signaling is fundamental to the regulation of cellular differentiation, cell growth and cell death in mammals as well as in invertebrates like Drosophila. Upon activation, the Notch receptor is cleaved and the intracellular part ICN assembles an activator complex around Suppressor of Hairless [Su(H)] that activates Notch target genes. Hairless (H) is the major antagonist of the Notch signaling pathway in Drosophila. In the absence of Notch signal, H binds to Su(H) and recruits two general co-repressors, Groucho (Gro) and C-terminal Binding Protein (CtBP); this repression complex downregulates Notch target genes. Previously we have shown that Gro and CtBP are recruited simultaneously to H and that they act in concert during wing and embryonic development. However, Gro and CtBP are utilized context-dependently by other transcription factors. Hence differential co-repressor recruitment by the Su(H)-H repressor complex is likewise conceivable. Here, we investigated the requirement for the co-repressors Gro and CtBP in H mediated Notch repression during several phases of eye development. Whereas both co-repressors appear likewise important during the specification of photoreceptor cells, we find differential requirement for the regulation of proliferation and cell death, respectively. During the early proliferative phase, H preferentially recruits Gro to inhibit Notch mediated growth of the eye disc. Elimination of superfluous interommatidial pigment cells, which depends on a late Notch signal, is antagonized by H and predominantly CtBP. In summary, differential recruitment of the co-repressors Gro and CtBP by H in a context-dependent manner ensures fine tuning of Notch signaling activity during eye development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Olho/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Olho/crescimento & desenvolvimento , Olho/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura , Ligação Proteica , Receptores Notch/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Biomolecules ; 11(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34827670

RESUMO

The Notch signaling pathway is pivotal to cellular differentiation. Activation of this pathway involves proteolysis of the Notch receptor and the release of the biologically active Notch intracellular domain, acting as a transcriptional co-activator of Notch target genes. While the regulation of Notch signaling dynamics at the level of ligand-receptor interaction, endocytosis, and transcriptional regulation has been well studied, little is known about factors influencing Notch cleavage. We identified EP555 as a suppressor of the Notch antagonist Hairless (H). EP555 drives expression of CG32521 encoding membrane-bound proteins, which we accordingly rename membrane-bound Notch regulator (mnr). Within the signal-receiving cell, upregulation of Mnr stimulates Notch receptor activation, whereas a knockdown reduces it, without apparent influence on ligand-receptor interaction. We provide evidence that Mnr plays a role in γ-secretase-mediated intramembrane cleavage of the Notch receptor. As revealed by a fly-eye-based reporter system, γ-secretase activity is stimulated by the overexpression of Mnr, and is inhibited by its knockdown. We conclude that Mnr proteins support Notch signaling activity by fostering the cleavage of the Notch receptor. With Mnr, we identified a membrane-bound factor directly augmenting Notch intra-membrane processing, thereby acting as a positive regulator of Notch signaling activity.


Assuntos
Drosophila melanogaster , Receptores Notch , Secretases da Proteína Precursora do Amiloide , Animais , Transdução de Sinais
17.
Front Cell Dev Biol ; 9: 658820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937259

RESUMO

The highly conserved Notch signaling pathway controls a multitude of developmental processes including hematopoiesis. Here, we provide evidence for a novel mechanism of tissue-specific Notch regulation involving phosphorylation of CSL transcription factors within the DNA-binding domain. Earlier we found that a phospho-mimetic mutation of the Drosophila CSL ortholog Suppressor of Hairless [Su(H)] at Ser269 impedes DNA-binding. By genome-engineering, we now introduced phospho-specific Su(H) mutants at the endogenous Su(H) locus, encoding either a phospho-deficient [Su(H) S269A ] or a phospho-mimetic [Su(H) S269D ] isoform. Su(H) S269D mutants were defective of Notch activity in all analyzed tissues, consistent with impaired DNA-binding. In contrast, the phospho-deficient Su(H) S269A mutant did not generally augment Notch activity, but rather specifically in several aspects of blood cell development. Unexpectedly, this process was independent of the corepressor Hairless acting otherwise as a general Notch antagonist in Drosophila. This finding is in agreement with a novel mode of Notch regulation by posttranslational modification of Su(H) in the context of hematopoiesis. Importantly, our studies of the mammalian CSL ortholog (RBPJ/CBF1) emphasize a potential conservation of this regulatory mechanism: phospho-mimetic RBPJ S221D was dysfunctional in both the fly as well as two human cell culture models, whereas phospho-deficient RBPJ S221A rather gained activity during fly hematopoiesis. Thus, dynamic phosphorylation of CSL-proteins within the DNA-binding domain provides a novel means to fine-tune Notch signal transduction in a context-dependent manner.

18.
Hereditas ; 147(5): 237-42, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21039460

RESUMO

The mammalian protein kinase D family is involved in manifold cellular processes including cell migration and motility. Recently it was shown that human PKD1 and PKD2 phosphorylate and thereby inhibit Slingshot 1 Like (SSH1L), a phosphatase which is central to the regulation of actin cytoskeletal dynamics. We noted before that the overexpression of a constitutively active form of Drosophila PKD (PKD-SE) affects the fly retina and the resultant phenotypes suggest underlying defects in the actin cytoskeleton. Drosophila Slingshot, however, does not possess the phosphorylation site known to be targeted in SSH1L by human PKD1. Here we show that Drosophila PKD, despite this lack of conservation, nevertheless negatively regulates Slingshot. Overexpression of the active PKD-SE protein causes cellular defects that are similar to those of slingshot mutants. These include aberrant bristle morphology and positioning of photoreceptor nuclei. Interestingly, the observed nuclear mispositioning is due to a disturbance of the cytoskeleton rather than the epithelial organization. In accordance, overexpression of PKD-SE results in an accumulation of filamentous actin. This enrichment is modified by changes in slingshot gene doses, in line with an antagonistic relationship between PKD and slingshot. We conclude that similar to mammals, Drosophila PKD is a negative regulator of Ssh, with the premise of a different target phosphorylation site in Ssh.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fosfoproteínas Fosfatases/genética , Células Fotorreceptoras de Invertebrados/fisiologia , Proteína Quinase C/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Humanos , Técnicas Imunoenzimáticas , Luz , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Transdução de Sinais
19.
Mol Biol Cell ; 18(10): 3733-40, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17634285

RESUMO

We have identified the gene putzig (pzg) as a key regulator of cell proliferation and of Notch signaling in Drosophila. pzg encodes a Zn-finger protein that was found earlier within a macromolecular complex, including TATA-binding protein-related factor 2 (TRF2)/DNA replication-related element factor (DREF). This complex is involved in core promoter selection, where DREF functions as a transcriptional activator of replication-related genes. Here, we provide the first in vivo evidence that pzg is required for the expression of cell cycle and replication-related genes, and hence for normal developmental growth. Independent of its role in the TRF2/DREF complex, pzg acts as a positive regulator of Notch signaling that may occur by chromatin activation. Down-regulation of pzg activity inhibits Notch target gene activation, whereas Hedgehog (Hh) signal transduction and growth regulation are unaffected. Our findings uncover different modes of operation of pzg during imaginal development of Drosophila, and they provide a novel mechanism of Notch regulation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores Notch/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Cromatina/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ativação Transcricional
20.
DNA Repair (Amst) ; 88: 102807, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32006716

RESUMO

Genomic integrity is challenged by endo- and exogenous assaults that are combated by highly conserved DNA repair mechanisms. Repair of DNA double-strand breaks (DSBs) is of particular importance, as DSBs inflict chromosome breaks that are the basis of genomic instability. High fidelity recombination repair of DSBs relies on the Rad51 recombinase, aided by several Rad51 paralogs. Despite their significant contribution to DSB repair, the individual roles for Rad51 paralogs are incompletely understood. Drosophila serves as a metazoan model for DNA damage repair at the organismal level. Yet, only two out of four Rad51 paralogs have been studied so far and both are restricted to meiotic recombination repair. Using CRISPR/Cas9 technology, we have generated the first X-ray repair cross complementing 2 (xrcc2) null mutant in Drosophila. Like any other Drosophila Rad51 homologue, loss of xrcc2 does not affect fly development. We found that Drosophila xrcc2 - despite a specific expression in ovaries - is not essential for meiotic DSB repair, but supports the process. In contrast, xrcc2 is required for mitotic DNA damage repair: the mutants are highly sensitive towards various genotoxic stressors, including ionizing radiation, which significantly increase mortality. Moreover, loss of xrcc2 provokes chromosome aberrations in mitotic larval neuroblasts under unstressed conditions and enduring chromosomal breaks as well as persistent repair foci after irradiation exposure. Together these results demonstrate that xrcc2 plays a crucial role in combating genotoxic insult by controlling DSB repair in somatic cells of Drosophila.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Alelos , Animais , Drosophila melanogaster/citologia , Deleção de Genes , Mitose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA