Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(59): e202301486, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37485580

RESUMO

Low-valent main group compounds that fluoresce in the solid-state were previously unknown. To address this, we investigated room-temperature photoluminescence from a series of crystals of germylenes 3-8 in this article; they exhibited emissions nearly reaching the NIR. Germylene carboxylates (3-8) were synthesized by reacting dipyrromethene stabilized germylene pyrrolide (2) with carboxylic acids such as acetic acid, trifluoroacetic acid, benzoic acid, p-cyanobenzoic acid, p-nitrobenzoic acid, and acetylsalicylic acid.

2.
Angew Chem Int Ed Engl ; 59(48): 21377-21381, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33462912

RESUMO

The biological applications of germylenes remain unrealised owing to their unstable nature. We report the isolation of air-, water-, and culture-medium-stable germylene DPMGeOH (3; DPM=dipyrromethene ligand) and its potential biological application. Compound 3 exhibits antiproliferative effects comparable to that of cisplatin in human cancer cells. The cytotoxicity of compound 3 on normal epithelial cells is minimal and is similar to that of the currently used anticancer drugs. These findings provide a framework for a plethora of biological studies using germylenes and have important implications for low-valent main-group chemistry.


Assuntos
Complexos de Coordenação/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células Vero
3.
Angew Chem Int Ed Engl ; 55(27): 7742-6, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27238633

RESUMO

Complexes of germanone containing formal Ge=O→M bonds (M=Zn, B, Ge, Sn) were isolated and characterized. The compounds were prepared through a novel synthetic route using a germanium µ-oxo dimer 3 as the starting material. This method circumvents the need to employ germanones to prepare complexes of germanones.

4.
Inorg Chem ; 54(23): 11067-76, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26558406

RESUMO

Use of a substituted digermylene oxide as a ligand has been demonstrated through the isolation of a series of group 11 metal(I) iodide complexes. Accordingly, the reactions of digermylene oxide [{(i-Bu)2ATIGe}2O] (ATI = aminotroponiminate) (1) with CuI under different conditions afforded [({(i-Bu)2ATIGe}2O)2(Cu4I4)] (2) with a Cu4I4 octahedral core, [({(i-Bu)2ATIGe}2O)2(Cu3I3)] (3) with a Cu3I3 core, and [{(i-Bu)2ATIGe}2O(Cu2I2)(C5H5N)2] (4) with a butterfly-type Cu2I2 core. The reactions of compound 1 with AgI and AuI produced [({(i-Bu)2ATIGe}2O)2(Ag4I4)] (5) with a Ag4I4 octahedral core and [{(i-Bu)2ATIGe}2O(Au2I2)] (6) with a Au2I2 core, respectively. The presence of metallophilic interactions in these compounds is shown through the single-crystal X-ray diffraction and atom-in-molecule (AIM) studies. Preliminary photophysical studies on compound 6 are also carried out.

5.
Chemistry ; 20(42): 13551-6, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25182838

RESUMO

The first example of a germanium(II) cyanide complex [GeCN(L)] (2) (L=aminotroponiminate (ATI)) has been synthesized through a novel and relatively benign route that involves the reaction of a digermylene oxide [(L)Ge-O-Ge(L)] (1) with trimethylsilylcyanide (TMSCN). Interestingly, compound 2 activates several aldehydes (RCHO) at room temperature and results in the corresponding cyanogermylated products [RC{OGe(L)}(CN)H] (R=H 3, iPr 4, tBu 5, CH(Ph)Me 6). Reaction of one of the cyanogermylated products (4) with TMSCN affords the cyanosilylated product [(iPr)C(OSiMe3 )(CN)H] (7) along with [GeCN(L)] quantitatively, and insinuates the possible utility of [GeCN(L)] as a catalyst for the cyanosilylation reactions of aldehydes with TMSCN. Accordingly, the quantitative formation of several cyanosilylated products [RC(OSiMe3 )(CN)H] (7-9) in the reaction between RCHO and TMSCN by using 1 mol % of [GeCN(L)] as a catalyst is also reported for the first time.

6.
Chemistry ; 20(33): 10240-4, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25044284

RESUMO

A germylene monochloride complex ((DPM)GeCl, 1) that is water stable was isolated for the first time. Interestingly, it reacts with cesium fluoride under ambient conditions (non-inert atmosphere and water-containing solvent) to afford water stable germylene monofluoride complex ((DPM)GeF, 2). Due to the usage of DPM (dipyrrinate) ligand, germylene monohalides 1 and 2 show fluorescence in the visible region at 555 and 538 nm, respectively. Compounds 1 and 2 are the first fluorescent germylene complexes and were characterized by multinuclear NMR spectroscopy. The structure of compound 1 was also proved by single crystal X-ray diffraction studies.

7.
Inorg Chem ; 53(1): 600-6, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24359431

RESUMO

Reaction of an aminotroponiminato(chloro)germylene [(i-Bu)2ATIGeCl] (1) (ATI = aminotroponiminate) with CuI in acetonitrile afforded an aminotroponiminato(chloro)germylene stabilized copper(I) iodide complex [{(i-Bu)2ATIGeCl}2(Cu4I4)(CH3CN)2] (2) with a tetrameric distorted cubane type Cu4I4 core. The reaction of compound 1 in dichloromethane with CuI in the presence of 2 equiv of pyridine resulted in the first germylene stabilized copper(I) iodide complex [{(i-Bu)2ATIGeCl}(CuI)(C5H5N)2] (3) with a monomeric CuI core. A reaction of compound 1 with equimolar amounts of CuI and pyridine in dichloromethane resulted in a copper(I) iodide complex [{(i-Bu)2ATIGeCl}2(Cu2I2)(C5H5N)2] (4) with a dimeric Cu2I2 core. Interestingly, an interconversion between compounds 3 and 4 and conversion of compound 2 to compounds 3 and 4 under suitable conditions are also reported. The compounds 2-4 have been characterized by multinuclear NMR spectroscopy and single-crystal X-ray diffraction studies. The copper atoms in all these complexes are tetracoordinate, and the Ge(II)-Cu(I) bond lengths in complexes 2, 3, and 4 are 2.341(1), 2.308(1), and 2.345(1) Å, respectively.

8.
Inorg Chem ; 53(10): 5073-9, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24807011

RESUMO

The stability of ligand-stabilized carboxylic acid derivatives (such as esters, amides, anhydrides, and acid halides) with terminal Ge═Te bonds is highly questionable as there is no report on such compounds. Nevertheless, we are able to isolate germatelluroester [LGe(Te)Ot-Bu] (4), germatelluroamide [LGe(Te)N(SiMe3)2] (5), and germatelluroacid anhydride [LGe(Te)OGe(Te)L] (6) complexes (L = aminotroponiminate (ATI)) as stable species. Consequently, the synthetic details, structural characterization, and UV-vis spectroscopic and theoretical studies on them are reported for the first time.

9.
Inorg Chem ; 53(19): 10054-9, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25198680

RESUMO

The potential of thio and seleno germanones [LPhGe═E] (L = aminotroponiminate (ATI) ligand, E = S 3, Se 4) to function as ligands has been demonstrated through the isolation of their silver(I) iodide complexes [{(t-Bu)2ATIGe(E)Ph}2(Ag2I2)] (E = S 5, Se 6) with a planar and discrete Ag2I2 core. Compounds 5 and 6 possess the hitherto unknown Ge═E→Ag-I moieties and the crystallographic data reveals the presence of a strong argentophilic interaction (2.950(1) Å) in complex 6, but is inconclusive in complex 5 (3.470(1) Å). Using theoretical studies, proof for the presence and absence of argentophilic interactions in complexes 6 and 5 was obtained, respectively. Further, it is disclosed that the donor ability of the chalcogen atoms in the Ge═E→Ag-I moieties dictate the Ag···Ag interaction in these complexes.

10.
Chem Asian J ; 19(15): e202400138, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38733617

RESUMO

The aminotroponiminate (ATI) ligand stabilized germylene cation [(i-Bu)2ATIGe][B(C6F5)4] (2) is found to be an efficient low-valent main-group catalyst for the cyanosilylation of aldehydes and ketones (ATI=aminotroponiminate). It was synthesized by reacting [(i-Bu)2ATIGeCl] (1) with Na[B(C6F5)4]. The catalytic cyanosilylation of diverse aliphatic and aromatic carbonyl compounds (aldehydes and ketones) using 0.075-0.75 mol% of compound 2 was completed within 5-45 min. The catalytic efficiency seen with aliphatic aldehydes was around 15,800 h-1, making compound 2 a capable low-valent main-group catalyst for the aldehyde and ketone cyanosilylation reactions. Further, DFT calculations reveal a pronounced charge localization at the germanium atom of compound 2, leading to its superior catalytic performance.

11.
Acc Chem Res ; 45(4): 578-87, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22214597

RESUMO

The past two decades have brought remarkable advances in organosilicon chemistry with the isolation of stable silylenes, persila-allene, and disilynes. The extension of this list gives an impression that it will continue to flourish. The judicous employment of sterically appropriate ligands has enabled the synthesis and isolation of compounds with low-valent silicon. Recently, for example, interconnected bis-silylenes were isolated where the two Si atoms are connected by a σ-bond and each Si atom is possessing a lone pair of electrons. The formal oxidation state of each Si atom in the interconnected bis-silylene is +1, so bis-silylenes can be considered as the valence isomers of disilynes. In this Account, we describe the synthesis of interconnected bis-silylenes and assess their potential as a new building block in organosilicon chemistry. In 2009, we reported the isolation of a bis-silylene ((PhC(NtBu)(2))(2)Si(2)) stabilized by a sterically bulky benz-amidinato ligand with tBu substituents on the nitrogen atoms. Prior to our work, Robinson and co-workers described the synthesis of a N-heterocyclic carbene stabilized bis-silylene. In following years, just two more interconnected bis-silylenes have been reported. Density functional theory calculations to establish the geometric and electronic structures of the reported bis-silylenes have shown that the Wiberg bond index (WBI) for all the reported bis-silylenes is ~1. The synthesis of stable (PhC(NtBu)(2))(2)Si(2) prompted explorations of its reactivity. An important facet of silylene chemistry involves oxidative addition at the Si(II) center with unsaturated substrates, a reaction also available for bis-silylenes. Due to the three reaction sites (two lone pairs of electrons and a labile Si(I)-Si(I) single bond) in the interconnected bis-silylenes, we expect novel product formation. A labile Si-Si bond facilitates the reactions of (PhC(NtBu)(2))(2)Si(2) with diphenyl alkyne or adamantyl phosphaalkyne which afforded 1,4- disilabenzene and 1,3-disilacarbaphosphide (CSi(2)P) derivatives, respectively. The former is a noteworthy addition to the silicon analogues of benzene, and the latter serves as a heavy cyclobutadiene. With white phosphorus, a cyclic Si(2)P(2) derivative, an analogue of cyclobutadiene was obtained. The most predominant structural feature of these heavy cyclobutadienes is the presence of two-coordinate P atoms.

12.
Inorg Chem ; 52(23): 13384-91, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24215646

RESUMO

A simple heating of aminotroponiminate (ATI) ligand stabilized germylene monochlorides [(R)2ATIGeCl] (R = t-Bu 1, i-Bu 2) with an excess of potassium hydroxide in toluene resulted in the first ATI ligand stabilized digermylene oxides [{(R)2ATIGe}2O] (R = t-Bu 3, i-Bu 4), respectively. Reaction of compound 3 with elemental sulfur and selenium gave the first germaacid anhydride complexes [{(t-Bu)2ATIGe(E)}2O] (E = S 5, Se 6) with (S)Ge-O-Ge(S) and (Se)Ge-O-Ge(Se) moieties, respectively. The digermylene oxide complexes 3 and 4 and germaacid anhydride complexes 5 and 6 were characterized by multinuclear NMR spectroscopy and single-crystal X-ray diffraction analysis. In its (77)Se NMR spectrum, compound 6 showed a resonance at -78.9 ppm. The Ge-O-Ge bond angles in compounds 5 and 6 are 178.66(2)° and 179.81(2)°, respectively. To understand further the bonding features, DFT calculations followed by MO, AIM, and NBO analysis were carried out on compounds 3, 5, and 6. The computed Wiberg bond indices of Ge-O bonds are slightly less than 0.5 in all the aforementioned compounds, and the same for the Ge═E bonds in compounds 5 and 6 are close to 1.4.

13.
Chem Asian J ; 18(17): e202300365, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347820

RESUMO

The possibility of using aza-dipyrromethene (a-DPM) ligands to stabilize compounds containing low-valent main group elements is demonstrated through the isolation of germylenes, a-DPM(p-tol)GeCl (2), a-DPM(Naph)GeCl (6), and a-DPM(Naph)GeN(TMS)2 (7) (tol=tolyl, Naph=naphthyl). Because of the presence of the a-DPM ligand, these germylenes exhibit an absorption maximum at around 640 nm, a highly red-shifted value previously unknown for germylenes.

14.
Acc Chem Res ; 44(3): 157-70, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21247094

RESUMO

Victor Grignard's Nobel Prize-winning preparation of organomagnesium halides (Grignard reagents) marked the formal beginning of organometallic chemistry with alkaline earth metals. Further development of this invaluable synthetic route, RX+Mg→RMgX, with the heavier alkaline earth metals (Ca and Sr) was hampered by limitations in synthetic methodologies. Moreover, the lack of suitable ligands for stabilizing the reactive target molecules, particularly with the more electropositive Ca and Sr, was another obstacle. The absence in the literature, until just recently, of fundamental alkaline earth metal complexes with M-H, M-F, and M-OH (where M is the Group 2 metal Mg, Ca, or Sr) bonds amenable for organometallic reactions is remarkable. The progress in isolating various unstable compounds of p-block elements with ß-diketiminate ligands was recently applied to Group 2 chemistry. The monoanionic ß-diketiminate ligands are versatile tools for addressing synthetic challenges, as amply demonstrated with alkaline earth complexes: the synthesis and structural characterization of soluble ß-diketiminatocalcium hydroxide, ß-diketiminatostrontium hydroxide, and ß-diketiminatocalcium fluoride are just a few examples of our contribution to this area of research. To advance the chemistry beyond synthesis, we have investigated the reactivity and potential for applications of these species, for example, through the demonstration of dip coating surfaces with CaCO(3) and CaF(2) with solutions of the calcium hydroxide and calcium fluoride complexes, respectively. In this Account, we summarize some recent developments in alkaline earth metal complex chemistry, particularly of Mg, Ca, and Sr, through the utilization of ß-diketiminate ligands. We focus on results generated in our laboratory but give due mention to work from other groups as well. We also highlight the closely related chemistry of the Group 12 element Zn, as well as the important chemistry developed by other groups using the complexes we have reported. Although Mg and Ca are more abundant in living organisms, no other metal has as many biological functions as Zn. Thus Zn, the nontoxic alternative to the heavier Group 12 elements Cd and Hg, occupies a unique position ripe for further exploration.

15.
Inorg Chem ; 51(17): 9240-8, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22889150

RESUMO

Fluorination of aminotroponiminate (ATI) ligand-stabilized germylene monochloride [(t-Bu)(2)ATI]GeCl (1) with CsF gave the aminotroponiminatogermylene monofluoride [(t-Bu)(2)ATI]GeF (2). Oxidative addition reaction of compound 2 with elemental sulfur and selenium led to isolation of the corresponding germathioacid fluoride [(t-Bu)(2)ATI]Ge(S)F (3) and germaselenoacid fluoride [(t-Bu)(2)ATI]Ge(Se)F (4), respectively. Similarly, reaction of aminotroponiminatogermylene monochloride [(i-Bu)(2)ATI]GeCl (9) with elemental sulfur and selenium gave the aminotroponiminatogermathioacid chloride [(i-Bu)(2)ATI]Ge(S)Cl (11) and aminotroponiminatogermaselenoacid chloride [(i-Bu)(2)ATI]Ge(Se)Cl (12), respectively. Compound 9 has been prepared through a multistep synthetic route starting from 2-(tosyloxy)tropone 5. All compounds (2-4 and 6-12) were characterized through the multinuclear NMR spectroscopy, and single-crystal X-ray diffraction studies were performed on compounds 2, 4, and 8-12. The germaselenoacid halide complexes 4 and 12 showed doublet (-142.37 ppm) and singlet (-213.13 ppm) resonances in their (77)Se NMR spectra, respectively. Germylene monohalide complexes 2 and 9 have a germanium center in distorted trigonal pyramidal geometry, whereas a distorted tetrahedral geometry is seen around the germanium center in germaacid halide complexes 4, 11, and 12. The length of the Ge═E bond in germathioacid chloride (11) and germaselenoacid halide (4 and 12) complexes is 2.065(1) and 2.194(av) Å, respectively. Theoretical studies (based on the DFT methods) on complexes 4, 11, and 12 reveal the nature of the Ge═E multiple bond in these germaacid halide complexes with computed Wiberg bond indices (WBI) being 1.480, 1.508, and 1.541, respectively.

16.
Dalton Trans ; 51(44): 16906-16914, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36301048

RESUMO

Two routes can offer the first stannylene cyanide [(L)SnCN] (5); the substitution reaction of either stannylene amide [(i-Bu)2ATISnN(SiMe3)2] (3) or stannylene pyrrolide [(i-Bu)2ATISn(NC4H4)] (4) using an excess of trimethylsilyl cyanide (L = aminotroponiminate (ATI)). Using 0.1-2.0 mol% of compound 5, catalytic cyanosilylation of a variety of aliphatic and aromatic aldehydes was achieved at rt-50 °C in 0.33-2.0 h. The mechanism of this catalytic reaction is authenticated by the isolation of a structurally characterized intermediate.

17.
Chem Sci ; 13(42): 12382-12388, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36382281

RESUMO

Germacarbonyl compounds are the germanium analogs of carbonyl compounds requiring an inert atmosphere for stability. Making these compounds survive the ambient conditions was not feasible given the lability of the Ge[double bond, length as m-dash]E bonds (E = O, S, Se, Te). However, the first examples of germacarbonyl compounds synthesized under ambient conditions by taking advantage of dipyrromethene ligand stabilization are detailed here; the isolated compounds are thiogermanone 3, selenogermanone 4, thiogermacarboxylic acid 6, selenogermacarboxylic acid 7, thiogermaester 9, selenogermaester 10, thiogermaamide 12, and selenogermaamide 13 with Ge[double bond, length as m-dash]E bonds (E = S, Se). Compounds 12 and 13 can react under atmospheric conditions with copper(i) halides offering air and water stable monomeric 14-15 and dimeric 16-19 copper(i) complexes (halide = Cl, Br, I). Apart from just binding, selectivity was also observed; thiogermaamide 12 and selenogermaamide 13 bind CuCl and CuBr, respectively, when treated with a mixture of copper(i) halides.

18.
J Am Chem Soc ; 131(9): 3156-7, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19226121

RESUMO

1-Naphthyl-, 9-phenanthryl-, and 9-anthryl-substituted trialkyldisilenes 1-3 were synthesized as the first stable disilenes with single polycyclic aromatic substituents, allowing elucidation of the unprecedented intramolecular charge transfer interaction between disilene pi and aromatic pi systems. Anthryl-substituted disilene 3 having a low-lying pi*(aryl) LUMO showed a distinct ICT absorption band due to the charge transfer from a disilene pi donor to an aromatic pi acceptor.

19.
Dalton Trans ; 48(13): 4094-4100, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30816383

RESUMO

Well-defined germylene cations [(i-Bu)2ATI]GeOTf (4) and [(i-Bu)2ATIGe][GaCl4] (5) are isolated, and the catalytic utility of compound 4 for the hydroboration of a variety of aldehydes and ketones is reported (ATI = aminotroponiminate).

20.
Dalton Trans ; 48(2): 664-672, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30542686

RESUMO

A triflatostannylene [L†Sn(ii)][OTf] (2) is reported here as an efficient catalyst with low-valent main-group element for the hydroboration of aldehydes and ketones (L† = aminotroponate). Using 0.025-0.25 mol% of compound 2, hydroboration of various aldehydes and ketones is accomplished in 0.13-1.25 h at room temperature; the aliphatic aldehydes show an impressive TOF of around 30 000 h-1. DFT calculations are performed to explore the mechanistic aspects of this reaction suggesting that the reaction proceeds via a stepwise pathway with hydridostannylene [L†Sn(ii)H] (2a) as the active catalyst and the H atom transfer from the Sn-H bond to the carbonyl carbon being the rate determining step.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA