Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 18(1): 275-284, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33300343

RESUMO

In recent years, the exploitation of magnetic nanoparticles in smart polymeric matrices have received increased attention in several fields as site-specific drug delivery systems. Here, ultrasonic-assisted emulsion copolymerization of N-isopropylacrylamide (NIPAM) and 2-(N,N-diethylaminoethyl) methacrylate (DEAEMA) in the presence of Fe3O4 nanoparticles was employed to prepare pH- and temperature-responsive magnetite nanocomposite particles (MNCPs). The obtained MNCPs were fully characterized by TEM, DSC, FT-IR, VSM, and XRD techniques. They had an average particle size of 70 nm with a lower critical solution temperature of 42 °C and superparamagnetic properties. In addition, MNCPs were loaded with methotrexate (MTX) as an anticancer drug, and their in vitro drug release was studied in different pH values and temperatures and in the presence of an alternating magnetic field. Noteworthy that the highest rate of MTX release was observed at pH 5.5 and 42 °C. Cell viability of the treated MCF-7 human breast cancer cell line with free MTX, MNCPs, and MTX-loaded MNCPs or in combination with magnetic hyperthermia (MHT) and water-based hyperthermia was comparatively studied. The obtained results showed about 17% higher antiproliferative activity for the MTX-loaded MNCPs accompanied by MHT relative to that of free MTX.


Assuntos
Hidrogéis/química , Hipertermia/tratamento farmacológico , Nanopartículas de Magnetita/química , Metotrexato/química , Metotrexato/farmacologia , Nanogéis/química , Neoplasias/tratamento farmacológico , Acrilamidas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Metacrilatos/química , Nanocompostos/química , Tamanho da Partícula , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
2.
Res Pharm Sci ; 18(1): 67-77, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846730

RESUMO

Background and purpose: Precise structures of macromolecules are important for structure-based drug design. Due to the limited resolution of some structures obtained from X-ray diffraction crystallography, differentiation between the NH and O atoms can be difficult. Sometimes a number of amino acids are missing from the protein structure. In this research, we intend to introduce a small database that we have prepared for providing the corrected 3D structure files of proteins frequently used in structure-based drug design protocols. Experimental approach: 3454 soluble proteins belonging to the cancer signaling pathways were collected from the PDB database from which a dataset of 1001 was obtained. All were subjected to corrections in the protein preparation step. 896 protein structures out of 1001 were corrected successfully and the decision on the remained 105 proposed twelve for homology modeling to correct the missing residues. Three of them were subjected to molecular dynamics simulation for 30 ns. Findings / Results: 896 corrected proteins were perfect and homology modeling on 12 proteins with missing residues in the backbone resulted in acceptable models according to Ramachandran, z-score, and DOPE energy plots. RMSD, RMSF, and Rg values verified the stability of the models after 30 ns molecular dynamics simulation. Conclusion and implication: A collection of 1001 proteins were modified for some defects such as adjustment of the bond orders and formal charges, and addition of missing side chains of residues. Homology modeling corrected the amino missing backbone residues. This database will be completed for quite a lot of water-soluble proteins to be uploaded to the internet.

3.
Curr HIV Res ; 19(1): 47-60, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32885756

RESUMO

INTRODUCTION: Gp41 and its conserved hydrophobic groove on the N-terminal heptad repeat region are attractive targets in the design of HIV-1 entry inhibitors. Linearly extended molecules have shown potent anti-HIV-1 activity for their effective interactions with the gp41 binding pocket. Rhodanine ring attached to substituted pyrrole or furan rings has been proved a preferred moiety to be inserted inside the molecular structure of the gp41 inhibitors. OBJECTIVES: Based on the previous findings we are going to describe some rhodanine derivatives in which a substituted imidazole ring is introduced in place of the pyrrole or furan rings. The compounds' flexibility is increased by inserting methylene groups inside the main scaffold. METHODS: Molecular docking and molecular dynamics simulations approaches were exploited to investigate the chemical interactions and the stability of the designed ligands-gp41 complex. All compounds were synthesized and their chemical structures were elucidated by 1HNMR, 13CNMR, FTIR and Mass spectroscopy. Biological activities of the compounds against HIV-1 and HIV-2 and their cellular toxicities against the T-lymphocyte (MT-4) cell line were determined. RESULTS: All the designed compounds showed proper and stable chemical interactions with gp41 according to the in silico studies. The results of the biological tests proved none of the compounds active against HIV-1 replication in cell cultures. CONCLUSION: Since all the studied compounds were potently toxic for the host cell; it was therefore not possible to assess their anti-HIV activities.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/uso terapêutico , Proteína gp41 do Envelope de HIV/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Rodanina/química , Rodanina/uso terapêutico , Relação Estrutura-Atividade , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA