RESUMO
BACKGROUND: Imatinib resistance remains a major obstacle in the treatment of chronic myelogenous leukemia (CML). Crocin (CRC) and astaxanthin (ATX) are phytochemicals with anti-cancer properties. AIMS: This study aimed to explore the effects of combination treatment of Imatinib with CRC and ATX on Imatinib-resistant K562 (IR-K562) cells. METHODS AND RESULTS: After the establishment of IR-K562 cells, growth inhibitory activity was determined by the MTT assay. To test the regeneration potential, a colony formation assay was performed. Cell cycle analyses were examined by flow cytometry. Cell injury was evaluated by lactate dehydrogenase (LDH) leakage. Real-time PCR was applied to assess the expression of IL6, TNF-α, STAT3, BAD, CASP3, TP53, and Bcl-2 genes. Caspase-3 activity was determined by a colorimetric assay. Antioxidant activity was measured using a diphenylpicrylhydrazyl (DPPH) assay. After 48 h of treatment, ATX (IC50 = 30µM) and CRC (IC50 = 190µM) significantly inhibited cell proliferation and colony formation ability, induced G1 cell cycle arrest and cell injury, upregulated the expression of apoptosis-associated genes, and downregulated the expression of anti-apoptotic and inflammatory genes. The combination of IM with ATX and/or CRC synergistically reduced cell viability (combination index [CI] < 1). CONCLUSION: Our data suggest that IM shows better therapeutic efficacy at lower doses when combined with ATX and/or CRC.
Assuntos
Carotenoides , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Antioxidantes/farmacologia , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Morte Celular , Inflamação , XantofilasRESUMO
Methotrexate (MTX), an antimetabolite agent, is widely used for acute lymphoblastic leukemia treatment, despite its association with significant organ dysfunction. Astaxanthin (AST) is a natural carotenoid which has recently been emerged as a promising anti-tumor and anti-inflammatory agent. In this study, we aimed to evaluate the effectiveness of astaxanthin and low-dose methotrexate co-treatment in acute lymphoblastic leukemia cell line. The expression of Dihydrofolate reductase (DHFR), Thymidylate synthase (TYMS), apoptotic, anti-apoptotic as well as inflammatory genes was investigated using qRT-PCR. Flow cytometry was performed for cell cycle quantitative evaluation. Clonogenic assay was used to assess NALM6 cells proliferation capacity following treatment with AST, MTX, and co-treatment. To compare the antioxidant property of each group, the ferric ion reducing anti-oxidant power assay was performed. A reduction in viability was observed in the presence of MTX, AST, and their combined treatment. Both AST alone and in combination with MTX caused cell cycle arrest and a reduction in the expression of DHFR and TYMS. While MTX, AST, and their combination could reduce STAT3 and BCL-XL gene expression, they could act as positive regulators for the expression of BAX and CASP3, TNFα, and IL6. AST and MTX co-treatment inhibited the colony formation ability. FRAP assay also revealed that AST and AST+MTX increased the antioxidant capacity. Our data suggests that AST can improve MTX treatment efficacy and their combination therapy can be considered as a promising strategy for the management of acute lymphoblastic leukemia.