Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Inflamm Res ; 72(12): 2145-2153, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874359

RESUMO

OBJECTIVE AND DESIGN: 15-Lipoxygenase-1 (15-LOX-1) catalyzes the biosynthesis of many anti-inflammatory and immunomodulatory lipid mediators and was reported to have protective properties in several inflammatory conditions, including osteoarthritis (OA). This study was designed to evaluate the expression of 15-LOX-1 in cartilage from normal donors and patients with OA, and to determine whether it is regulated by DNA methylation. METHODS: Cartilage samples were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee joint replacement surgery. The expression of 15-LOX-1 was evaluated using real-time polymerase chain reaction (PCR). The role of DNA methylation in 15-LOX-1 expression was assessed using the DNA methyltransferase inhibitor 5-Aza-2'-desoxycytidine (5-Aza-dC). The effect of CpG methylation on 15-LOX-1 promoter activity was evaluated using a CpG-free luciferase vector. The DNA methylation status of the 15-LOX-1 promoter was determined by pyrosequencing. RESULTS: Expression of 15-LOX-1 was upregulated in OA compared to normal cartilage. Treatment with 5-Aza-dC increased 15-LOX-1 mRNA levels in chondrocytes, and in vitro methylation decreased 15-LOX-1 promoter activity. There was no difference in the methylation status of the 15-LOX-1 gene promoter between normal and OA cartilage. CONCLUSION: The expression level of 15-LOX-1 was elevated in OA cartilage, which may be part of a repair process. The upregulation of 15-LOX-1 in OA cartilage was not associated with the methylation status of its promoter, suggesting that other mechanisms are involved in its upregulation.


Assuntos
Araquidonato 15-Lipoxigenase , Osteoartrite , Humanos , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Condrócitos/metabolismo , Metilação de DNA , Epigênese Genética , Osteoartrite/genética , Osteoartrite/metabolismo , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo
2.
Inflamm Res ; 71(7-8): 887-898, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716172

RESUMO

OBJECTIVE AND DESIGN: Mesenchymal stromal cells (MSCs) are currently used in cell reparative medicine due to their trophic and ant-inflammatory properties. The modulation of stem cell properties by phytochemicals has been suggested as a tool to empower their tissue repair capacity. In vitro, MSCs are characterized by their tri-lineage potential that holds great interest for tissue regeneration. Ptychotis Verticillata (PV), an aromatic and medicinal plant, may be thus used to modulate the in vitro multilineage potential of MSCs. MATERIALS AND METHODS: We screened the impact of PV-derived essential oil and their bioactive molecules (thymol and carvacrol) on the in vitro multilineage potential of MSCs. Different concentrations and incubation times of these compounds were assessed during the osteogenesis and adipogenesis of MSCs. RESULTS: The analysis of 75 conditions indicates that these compounds are biologically active by promoting two major differentiation lineages from MSCs. In a time- and dose-dependent manner, thymol and carvacrol increased the osteogenesis and adipogenesis. CONCLUSION: According to these preliminary observations, the addition of PV extract may stimulate the tissue regenerative and repair functions of MSCs. Further optimization of compound extraction and characterization from PV as well as cell treatment conditions should increase their therapeutic value in combination with MSCs.


Assuntos
Células-Tronco Mesenquimais , Timol , Diferenciação Celular , Células Cultivadas , Humanos , Inflamação , Osteogênese
3.
Inflamm Res ; 70(2): 229-239, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33404674

RESUMO

OBJECTIVE: One of the main challenges in liver cell therapy is the replacement of damaged cells and the induction of a tolerogenic microenvironment to promote graft acceptance by the recipient. Adult-derived human liver stem/progenitor cells (ADHLSCs) are currently evaluated at the clinical levels as a promising pro-regenerative and immune-modulatory tool. The expression profile of several immunological molecules may influence the local immune-inflammatory response and, therefore, modulate the tissue healing process. To increase the quality and safety of ADHLSCs before transplantation requires an appropriate analysis and characterization of their pattern expression of immune-inflammatory-associated molecules. METHODS: The expression of 27 molecules belonging to T-cell co-stimulatory pathway, CD47 partners, Ikaros family, CD300 family and TNF family were analyzed using flow cytometry. We compared their expression profiles to PBMCs, hepatocytes and ADHLSCs in both expansion and after hepatogenic differentiation culture conditions. RESULTS: This original immuno-comparative screening revealed that liver cell populations do not constitutively present significant immunological pattern compared to PBMCs. Moreover, our findings highlight that neither the expansion nor the hepatogenic differentiation induces the expression of immune-inflammatory molecules. The detailed expression characteristics (percentage of positive cells and median fluorescence intensity) of each molecule were analyzed and presented. CONCLUSION: By analyzing 27 relevant molecules, our immuno-comparative screening demonstrates that ADHLSCs keep a non-immunogenic profile independent of their expansion or hepatogenic differentiation state. Accordingly, the immunological profile of ADHLSCs seems to support their safe and efficient use in liver tissue therapeutic repair strategy.


Assuntos
Fígado/citologia , Células-Tronco/imunologia , Adulto , Antígenos CD/imunologia , Diferenciação Celular , Células Cultivadas , Hepatócitos/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Transplante de Células-Tronco , Linfócitos T/imunologia
4.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298927

RESUMO

Adult human subcutaneous adipose tissue (AT) harbors a rich population of mesenchymal stromal cells (MSCs) that are of interest for tissue repair. For this purpose, it is of utmost importance to determine the response of AT-MSCs to proliferative and inflammatory signals within the damaged tissue. We have characterized the transcriptional profile of cytokines, regulatory mediators and Toll-like receptors (TLR) relevant to the response of MSCs. AT-MSCs constitutively present a distinct profile for each gene and differentially responded to inflammation and cell-passaging. Inflammation leads to an upregulation of IL-6, IL-8, IL-1ß, TNFα and CCL5 cytokine expression. Inflammation and cell-passaging increased the expression of HGF, IDO1, PTGS1, PTGS2 and TGFß. The expression of the TLR pattern was differentially modulated with TLR 1, 2, 3, 4, 9 and 10 being increased, whereas TLR 5 and 6 downregulated. Functional enrichment analysis demonstrated a complex interplay between cytokines, TLR and regulatory mediators central for tissue repair. This profiling highlights that following a combination of inflammatory and proliferative signals, the sensitivity and responsive capacity of AT-MSCs may be significantly modified. Understanding these transcriptional changes may help the development of novel therapeutic approaches.


Assuntos
Citocinas/genética , Regulação da Expressão Gênica/genética , Inflamação/genética , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/genética , Receptores Toll-Like/genética , Transcrição Gênica/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Humanos , Gordura Subcutânea/metabolismo , Regulação para Cima/genética
5.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466806

RESUMO

Acute myeloid leukemia (AML) is a cancer of the myeloid lineage of blood cells, and treatment for AML is lengthy and can be very expensive. Medicinal plants and their bioactive molecules are potential candidates for improving human health. In this work, we studied the effect of Ptychotis verticillata (PV) essential oil and its derivatives, carvacrol and thymol, in AML cell lines. We demonstrated that a combination of carvacrol and thymol induced tumor cell death with low toxicity on normal cells. Mechanistically, we highlighted that different molecular pathways, including apoptosis, oxidative, reticular stress, autophagy, and necrosis, are implicated in this potential synergistic effect. Using quantitative RT-PCR, Western blotting, and apoptosis inhibitors, we showed that cell death induced by the carvacrol and thymol combination is caspase-dependent in the HL60 cell line and caspase-independent in the other cell lines tested. Further investigations should focus on improving the manufacturing of these compounds and understanding their anti-tumoral mechanisms of action. These efforts will lead to an increase in the efficiency of the oncotherapy strategy regarding AML.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Cimenos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Timol/farmacologia , Anti-Infecciosos/farmacologia , Proliferação de Células , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/patologia , Células Tumorais Cultivadas
6.
J Cell Physiol ; 235(6): 5204-5212, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31736084

RESUMO

Triple-negative breast cancer (TNBC) represents 15% of breast carcinomas. More than 80% of women with a breast cancer associated with a breast cancer type 1 (BRCA1) mutation develop a TNBC. microRNAs (miRNAs) play critical roles in diverse biological processes and are aberrantly expressed in several human neoplasms including breast cancer, where they function as actors of tumor onset, behavior, and progression. However, an extensive microRNA profile has not yet been determined for TNBC. Taqman low-density arrays (TLDAs) were used to screen the expression level of 667 miRNAs in TNBC versus normal breast tissues. Our TLDA results revealed 20 differentially expressed miRNAs among which 14 (10 upregulated and four downregulated) were confirmed by an individual quantitative real-time polymerase chain reaction. Interestingly, a novel link between BRCA1 status and miRNA expression level was identified through miR-96 and miR-10b that were very important discriminators between TNBC with mutated BRCA1 and TNBC with wild type BRCA1. This study promises discoveries of new pathological pathways at work in this dreadful disease and clearly warrants validation in large prospective studies with the aim of identifying novel biomarkers for diagnosis and targets for clinical interventions.


Assuntos
Proteína BRCA1/genética , Biomarcadores Tumorais/genética , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Mutação/genética , Intervalo Livre de Progressão , Neoplasias de Mama Triplo Negativas/patologia
7.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992819

RESUMO

BACKGROUND: In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS: Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS: We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS: This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.


Assuntos
Medula Óssea/metabolismo , MicroRNA Circulante/metabolismo , Leucemia Mieloide Aguda , Microambiente Tumoral , Biomarcadores Tumorais/metabolismo , Medula Óssea/patologia , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Prognóstico
8.
J Cell Physiol ; 234(11): 21145-21152, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31041809

RESUMO

Adipose tissue-derived mesenchymal stromal cells (ASCs) hold the promise of achieving successful immunotherapeutic results due to their ability to regulate different T-cell fate. ASCs also show significant adaptability to environmental stresses by modulating their immunologic profile. Cell-based therapy for inflammatory diseases requires a detailed understanding of the molecular relation between ASCs and Th17 lymphocytes taking into account the influence of inflammation and cell ratio on such interaction. Accordingly, a dose-dependent increase in Th17 generation was only observed in high MSC:T-cell ratio with no significant impact of inflammatory priming. IL-23 receptor (IL-23R) expression by T cells was not modulated by ASCs when compared to levels in activated T cells, while ROR-γt expression was significantly increased reaching a maximum in high (1:5) unprimed ASC:T-cell ratio. Finally, multiplex immunoassay showed substantial changes in the secretory profile of 15 cytokines involved in the Th17 immune response (IL-1ß, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-22, IL-21, IL-23, IL-25, IL-31, IL-33, IFN-γ, sCD40, and TNF-α), which was modulated by both cell ratio and inflammatory priming. These findings suggest that Th17 lymphocyte pathway is significantly modulated by ASCs that may lead to immunological changes. Therefore, future ASC-based immunotherapy should take into account the complex and detailed molecular interactions that depend on several factors including inflammatory priming and cell ratio.


Assuntos
Células-Tronco Mesenquimais/imunologia , Células Th17/imunologia , Diferenciação Celular/imunologia , Humanos , Ativação Linfocitária/imunologia
9.
J Cell Physiol ; 234(10): 17459-17472, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30805923

RESUMO

Regulatory T cells (Tregs) are central for maintaining immune balance and their dysfunction drives the expansion of critical immunologic disorders. During the past decade, microRNAs (miRNAs) have emerged as potent regulators of gene expression among which immune-related genes and their immunomodulatory properties have been associated with different immune-based diseases. The miRNA signature of human peripheral blood (PB) CD8+ CD25 + CD127 low Tregs has not been described yet. We thus identified, using TaqMan low-density array (TLDA) technique followed by individual quantitative real-time polymerase chain reaction (qRT-PCR) confirmation, 14 miRNAs, among which 12 were downregulated whereas two were upregulated in CD8 + CD25 + CD127 low Tregs in comparison to CD8 + CD25 - T cells. In the next step, microRNA Data Integration Portal (mirDIP) was used to identify potential miRNA target sites in the 3'-untranslated region (3'-UTR) of key Treg cell-immunomodulatory genes with a special focus on interleukin 10 (IL-10) and transforming growth factor ß (TGF-ß). Having identified potential miR target sites in the 3'-UTR of IL-10 (miR-27b-3p and miR-340-5p) and TGF-ß (miR-330-3p), we showed through transfection and transduction assays that the overexpression of two underexpressed miRNAs, miR-27b-3p and miR-340-5p, downregulated IL-10 expression upon targeting its 3'-UTR. Similarly, overexpression of miR-330-3p negatively regulated TGF-ß expression. These results highlighted an important impact of the CD8 + Treg mirnome on the expression of genes with significant implication on immunosuppression. These observations could help in better understanding the mechanism(s) orchestrating Treg immunosuppressive function toward unraveling new targets for treating autoimmune pathologies and cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Expressão Gênica/imunologia , Interleucina-10/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/imunologia , Humanos , MicroRNAs/genética
10.
Inflamm Res ; 68(2): 167-176, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30426152

RESUMO

OBJECTIVE AND DESIGN: Bone marrow mesenchymal stromal cells (BM-MSCs) are referred as a promising immunotherapeutic cell product. New approaches using empowered MSCs should be developed as for the treatment or prevention of different immunological diseases. Such preconditioning by new licensing stimuli will empower the immune fate of BM-MSCs and, therefore, promote a better and more efficient biological. Here, our main goal was to establish the immunological profile of BM-MSCs following inflammatory priming and in particular their capacity to adjust their immune-related proteome and transcriptome. MATERIAL AND METHODS: To run this study, we have used BM-MSC cell cultures, a pro-inflammatory cytokine cocktail priming, flow cytometry analysis, qPCR and ELISA techniques. RESULTS: Different expression levels of several immunological mediators such as COX-1, COX-2, LIF, HGF, Gal-1, HO-1, IL-11, IL-8, IL-6 and TGF-ß were constitutively observed in BM-MSCs. Inflammation priming substantially but differentially modulated the gene and protein expression profiles of these mediators. Thus, expressions of COX-2, LIF, HGF, IL-11, IL-8 and IL-6 were highly increased/induced and those of COX-1, Gal-1, and TGF-ß were reduced. CONCLUSIONS: Collectively, we demonstrated that BM-MSCs are endowed with a specific and modular regulatory machinery which is potentially involved in immunomodulation. Moreover, BM-MSCs are highly sensitive to inflammation and respond to such signal by properly adjusting their gene and protein expression of regulatory factors. Using such preconditioning may empower the immune fate of MSCs and, therefore, enhance their value for cell-based immunotherapy.


Assuntos
Células da Medula Óssea/imunologia , Inflamação/genética , Inflamação/imunologia , Células-Tronco Mesenquimais/imunologia , Citocinas/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Imunomodulação/genética , Imunomodulação/fisiologia , Mediadores da Inflamação/metabolismo , Transplante de Células-Tronco Mesenquimais , Reação em Cadeia da Polimerase , Processamento de Proteína Pós-Traducional , Proteoma/genética , Transcriptoma/genética
11.
Inflamm Res ; 68(3): 203-213, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30506263

RESUMO

OBJECTIVE AND DESIGN: The objective of the study is to uncover the influence of human bone marrow-derived mesenchymal stem cells (BM-MSCs) on the generation of Th17 lymphocytes in co-cultures of both BM-MSCs and T cells. MATERIALS AND METHODS: BM-MSCs, characterized according to the international society for cellular therapy (ISCT) criteria, were co-cultured with T cells isolated from peripheral blood. The expression levels of IL-17 receptor, RORγt and IL-23 receptor were evaluated using flow cytometry. The levels of cytokines involved in Th17 immunomodulation were measured using multiplex assay. TREATMENT: Inflammatory primed and non-primed BM-MSCs were co-cultured with either activated or non-activated T cells either at (1/80) and (1/5) ratio respectively. RESULTS: MSC/T-cell ratio and inflammation significantly influenced the effect of BM-MSCs on the generation of Th17 lymphocytes. Cocultures of either primed or non-primed BM-MSCs with activated T cells significantly induced IL-17A-expressing lymphocytes. Interestingly, the expression of the transcription factor RORγt was significantly increased when compared to levels in activated T cells. Finally, both cell ratio and priming of BM-MSCs with cytokines substantially influenced the cytokine profile of BM-MSCs and T cells. CONCLUSION: Our findings suggest that BM-MSCs significantly modulate the Th17 lymphocyte pathway in a complex manner.


Assuntos
Células-Tronco Mesenquimais/imunologia , Células Th17/imunologia , Células da Medula Óssea/citologia , Técnicas de Cocultura , Citocinas/imunologia , Humanos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Receptores de Interleucina/imunologia
12.
J Cell Physiol ; 233(7): 5243-5254, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29194614

RESUMO

Foreskin-mesenchymal stromal cells (FSK-MSCs) are immune-privileged thus making them valuable immunotherapeutic cell product. Characterization of the relationship between FSK-MSCs and natural killer (NK) cells is essential to improve cell-based therapy. In the present study, we studied for the first time FSK-MSCs-NK interaction and showed that the result of such cross talk was robustly dependent on the type of cytokines (IL-2, IL-12, IL-15, and IL-21) employed to activate NK cells. Distinctly activated-NK cells showed uneven cytotoxicity against FSK-MSCs, triggering their death in fine. The expression of different cell-surface ligands (CD112, CD155, ULPB-3) and receptors (LAIR, KIRs) ensuring such interaction was altered following co-culture of both populations. Despite their partial negative effect on NK cell proliferation, FSK-MSCs boosted the capacity of activated NK-cells to secrete IFN-γ and TNF-α. Moreover, FSK-MSCs enhanced degranulation of NK cells, reinforced secretion of perforin and granzymes, while only modestly increased ROS production. On the other hand, FSK-MSCs-mediated expression of C1 and B9 serpins was significantly lowered in the presence of activated NK cells. Altogether, our results highlight major immunological changes following FSK-MSCs-NK interaction. Understanding these outcomes will therefore enhance the value of the therapeutic strategy.


Assuntos
Prepúcio do Pênis/citologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/genética , Células-Tronco Mesenquimais/citologia , Proliferação de Células/genética , Terapia Baseada em Transplante de Células e Tecidos/métodos , Técnicas de Cocultura , Prepúcio do Pênis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Imunomodulação/genética , Imunomodulação/imunologia , Imunoterapia , Interferon gama/genética , Interleucina-2/genética , Ligantes , Masculino , Serpinas/genética , Fator de Necrose Tumoral alfa/genética
13.
BMC Cell Biol ; 19(1): 4, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29625551

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) become an attractive research topic because of their crucial roles in tissue repair and regenerative medicine. Foreskin is considered as a valuable tissue source containing immunotherapeutic MSCs (FSK-MSCs). RESULTS: In this work, we used aldehyde dehydrogenase activity (ALDH) assay (ALDEFLUOR™) to isolate and therefore characterize subsets of FSK-MSCs. According to their ALDH activity, we were able to distinguish and sort by fluorescence activated cell sorting (FACS) two subsets of FSK-MSCs (referred as ALDH+ and ALDH-). Consequently, these subsets were characterized by profiling the gene expression related to the main properties of MSCs (proliferation, response to hypoxia, angiogenesis, phenotype, stemness, multilineage, hematopoiesis and immunomodulation). We thus demonstrated by Real Time PCR several relevant differences in gene expression based on their ALDH activity. CONCLUSION: Taken together, this preliminary study suggests that distinct subsets of FSK-MSCs with differential gene expression profiles depending of ALDH activity could be identified. These populations could differ in terms of biological functionalities involving the selection by ALDH activity as useful tool for potent therapeutic applications. However, functional studies should be conducted to confirm their therapeutic relevance.


Assuntos
Aldeído Desidrogenase/metabolismo , Separação Celular/métodos , Prepúcio do Pênis/citologia , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Hipóxia Celular/genética , Linhagem da Célula , Citometria de Fluxo , Humanos , Imunomodulação/genética , Imunofenotipagem , Masculino , Neovascularização Fisiológica/genética , Fenótipo
14.
Stem Cells ; 35(10): 2184-2197, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28795454

RESUMO

Increasing evidence supports that modifications in the mitochondrial content, oxidative phosphorylation (OXPHOS) activity, and cell metabolism influence the fate of stem cells. However, the regulators involved in the crosstalk between mitochondria and stem cell fate remains poorly characterized. Here, we identified a transcriptional regulatory axis, composed of transcription factor 7-like 2 (TCF7L2) (a downstream effector of the Wnt/ß-catenin pathway, repressed during differentiation) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) (the master regulator of mitochondrial biogenesis, induced during differentiation), coupling the loss of pluripotency and early commitment to differentiation, to the initiation of mitochondrial biogenesis and metabolic shift toward OXPHOS. PGC-1α induction during differentiation is required for both mitochondrial biogenesis and commitment to the hepatocytic lineage, and TCF7L2 repression is sufficient to increase PGC-1α expression, mitochondrial biogenesis and OXPHOS activity. We further demonstrate that OXPHOS activity is required for the differentiation toward the hepatocytic lineage, thus providing evidence that bi-directional interactions control stem cell differentiation and mitochondrial abundance and activity. Stem Cells 2017;35:2184-2197.


Assuntos
Fígado/citologia , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/crescimento & desenvolvimento , Biogênese de Organelas , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transdução de Sinais , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Transfecção , beta Catenina/metabolismo
15.
Mol Cell Biochem ; 447(1-2): 111-124, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29380244

RESUMO

Due to their easier isolation, multilineage potential, and immunomodulatory capacity, Wharton's Jelly-derived mesenchymal stromal cells (WJ-MSCs) exhibit promising efficacy in the field of regenerative medicine and immunotherapy. Characterization of WJ-MSCs-natural killer (NK) cells crosstalk is required for ameliorating the medicinal value of WJ-MSCs. Here, we revealed that the outcome of WJ-MSCs-NK cells crosstalk varied according to the type of cytokines (IL-2, IL-12, IL-15 and IL-21) utilized to activate NK cells. Differently activated NK cells exerted distinct cytotoxicities against WJ-MSCs causing their probable death. Cell surface ligands (CD112, CD155, ULPB-3) and receptors (LAIR, CD226, CD314, CD335, CD336 and CD337) governing the interaction between NK cells and their targets, exhibited altered expression profiles following the co-culture with WJ-MSCs. Although partly inhibited NK cell proliferation, WJ-MSCs enhanced activated NK-cell-mediated secretion of IFN-γ and TNF-α. Moreover, WJ-MSCs reinforced NK cells' degranulation as well as secretion of perforin and granzymes. On the other hand, WJ-MSCs displayed only slight increase in ROS generation but significant decrease in A1 and C1 serpins expression following co-culture with activated NK cells. Altogether, our results highlight that WJ-MSCs-NK cells interaction may affect both cell type features and, therefore, their therapeutic properties.


Assuntos
Antígenos CD/imunologia , Comunicação Celular/imunologia , Proliferação de Células , Citocinas/imunologia , Células Matadoras Naturais/imunologia , Células-Tronco Mesenquimais/imunologia , Técnicas de Cocultura , Humanos , Células Matadoras Naturais/citologia , Células-Tronco Mesenquimais/citologia , Espécies Reativas de Oxigênio/imunologia
16.
Inflamm Res ; 67(6): 467-477, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29362849

RESUMO

Mesenchymal stromal cells (MSCs) are multipotent adult cells with relevant biological properties making them interesting tools for cell-based therapy. These cells have the ability to home to sites of injury and secrete bioactive factors as part of their therapeutic functions. However, depending on the local environment, diverse functions of MSCs can be modulated and thus can influence their therapeutic value. The specific cytokine milieu within the site of inflammation is vital in determining the fate and cell behaviors of MSCs. Indeed, inflammatory signals (called as inflammatory priming), may induce critical changes on the phenotype, multilineage potential, hematopoietic support and immunomodulatory capacity of MSCs. Thus, for appropriate clinical application of MSCs, it is important to well know and understand these effects. In summary, investigating MSC interactions with the inflammatory environment is necessary to empower the therapeutic value of MSCs.


Assuntos
Inflamação/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Humanos , Imunomodulação , Fenótipo
17.
Cell Biol Int ; 42(2): 254-260, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29064609

RESUMO

Mesenchymal stromal cells (MSCs) display a special immunological profile that allows their potential use as immunotherapeutic cells. Nowadays, foreskin (FSK) represents a valuable reservoir of MSCs with International Society for Cellular Therapy (ISCT) compliant criteria and relevant functional properties. However, their mode of action is poorly understood and needs to be more elucidated to optimize their therapeutic use. Because microRNAs (miRNAs) act as key regulators in a wide variety of biological processes, we decided to establish the micronome of FSK-MSCs, the influence of inflammation and the predicted target pathways. Here, we provide the full list of unchanged and additional four differentially expressed miRNAs, miR-199b, -296-3p and -589-5p being downregulated whilst miR-146-3p being upregulated, in MSCs following their exposure to a cocktail of proinflammatory cytokines. MicroRNA target prediction in addition to Pathway enrichment analysis performed using miRNet, showed that miR-296-3p is linked to antigen processing and presentation pathway. Collectively, our data indicate that the micronome of FSK-MSCs is partially responsive to inflammation. Differentially expressed miRNAs are subsequently modulated by inflammation and seem to be involved in regulating the immunological fate of FSK-MSCs. These miRNAs deserve more attention in order to optimize MSC-based therapy and achieve the appropriate therapeutic effect.


Assuntos
Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Células Cultivadas , Citocinas/farmacologia , Humanos , Mediadores da Inflamação/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fenótipo
18.
J Transl Med ; 15(1): 10, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086811

RESUMO

BACKGROUND: Due to their self-renewal capacity, multi-lineage potential, and immunomodulatory properties, mesenchymal stromal cells (MSCs) are an attractive tool for different therapeutic strategies. Foreskin (FSK), considered as a biological waste material, has already been shown to be a valuable source of MSCs. Besides their typical fibroblast like morphology and International Society for cellular Therapy compliant phenotype, foreskin-MSCs (FSK-MSCs) are clonogenic, and highly proliferative cells with multi-lineage and strong immunomodulatory capacities. Of importance, FSK-MSCs properly adjust their fate following exposure to inflammatory signals. Being potent regulators of gene expression, miRNAs are involved in modulating nearly all cellular processes and in orchestrating the roles of different immune cells. In this study, we characterized the miRNome of FSK-MSCs by determining the expression profile of 380 different miRNAs in inflammation primed vs. control non-primed cells. METHODS: TaqMan low density array (TLDA) was performed to identify dysregulated miRNAs after exposing FSK-MSCs to inflammatory signals. Quantitative real-time RT-PCR was carried out to validate the observations. DIANA-miRPath analysis web server was used to identify potential pathways that could be targeted by the dysregulated miRNAs. RESULTS: Sixteen miRNAs were differentially expressed in inflammation-primed vs. non-primed FSK-MSCs. The expression level of miR-27a, -145, -149, -194, -199a, -221, -328, -345, -423-5p, -485-3p, -485-5p, -615-5p and -758 was downregulated whilst that of miR-155, -363 and -886-3p was upregulated. Target pathway prediction of those differentially expressed miRNAs identified different inflammation linked pathways. CONCLUSIONS: After determining their miRNome, we identified a striking effect of inflammatory signals on the miRNAs' expression levels in FSK-MSCs. Our results highlight a potential role of miRNAs in modulating the transcription programs of FSK-MSCs in response to inflammatory signals. Further, we propose that specific miRNAs could serve as interesting targets to manipulate some functions of FSK-MSCs, thus ameliorating their therapeutic potential.


Assuntos
Prepúcio do Pênis/citologia , Perfilação da Expressão Gênica , Inflamação/genética , Inflamação/patologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Humanos , Masculino , MicroRNAs/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
19.
Cytokine ; 90: 130-134, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27865205

RESUMO

AIM: Uncertainty about the safety of cell therapy continues to be a major challenge to the medical community. Inflammation and the associated immune response represent a major safety concern hampering the development of long-term clinical therapy. In vivo interactions between the cell graft and the host immune system are mediated by functional environmental sensors and stressors that play significant roles in the immunobiology of the graft. Within this context, human liver stellate cells (HSC) demonstrated marked immunological plasticity that has main importance for future liver cell therapy application. METHODS: By using qPCR technique, we established the cytokine gene expression profile of HSCs and investigated the effect of an inflammatory environment on the immunobiology of HSCs. RESULTS AND DISCUSSION: HSCs present a specific immunological profile as demonstrated by the expression and modulation of major immunological cytokines. Under constitutive conditions, the cytokine pattern expressed by HSCs was characterized by the high expression of IL-6. Inflammation critically modulated the expression of major immunological cytokines. As evidenced by the induction of the expression of several inflammatory genes, HSCs acquire a pro-inflammatory profile that ultimately might have critical implications for their immunological shape. CONCLUSION: These new observations have to be taken into account in any future liver cell therapy application based on the use of HSCs.


Assuntos
Células Estreladas do Fígado/imunologia , Hepatite/imunologia , Interleucina-6/imunologia , Células Cultivadas , Células Estreladas do Fígado/patologia , Hepatite/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia
20.
Inflamm Res ; 66(2): 129-139, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27783097

RESUMO

OBJECTIVE: The role of direct cell-cell interactions mediating selective bone metastasis by breast cancer cells (BCCs) niche is still mostly unknown. MATERIALS AND METHODS: Conditioned medium and direct cell-cell contacts experiments were used to investigate the effect of bone marrow-derived mesenchymal stromal cells (MSCs), osteoprogenitor-like cells (MG-63) and osteosarcoma cells (SaOS-2) on luminal-like (MCF-7) and basal-like (MDA-MB-231) BCCs flow cytometry was used to assess the purity of isolated BCCs and osteoblasts. Expression of osteoblastic markers was investigated by semi-quantitative RT-PCR. RANKL and OPG levels were measured by ELISA. RESULTS: Conditioned medium from MSCs and osteoblasts induced the expression of osteoblastic markers in BCCs. While co-culture assays with SaOS-2 increased the expression of osteoblastic markers in MCF-7 cells, SaOS-2 cell conditioned medium increased the expression of RANKL, PTHrP, VEGF and NOGGIN in MCF-7 cells. Co-cultures with either MG-63 cells or MSCs induced OPG and MMP-2 in both tumor cell lines. Interestingly, conditioned medium from co-cultures of MSCs and MDA-MB-231 cells significantly decreased the proliferation of activated T lymphocytes which was reversed by addition of anti-OPG antibodies to the co-cultures. CONCLUSION: Our data suggest that MSCs strongly contribute to the adaptation and invasiveness of breast cancer cells in skeletal tissues.


Assuntos
Neoplasias da Mama/imunologia , Células-Tronco Mesenquimais/imunologia , Células da Medula Óssea/citologia , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/imunologia , Osteoblastos/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA