Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30787043

RESUMO

By serving as intermediaries between cellular metabolism and the bioenergetic demands of proliferation, endolysosomes allow cancer cells to thrive under normally detrimental conditions. Here, we show that an endolysosomal TRP channel, TRPML1, is necessary for the proliferation of cancer cells that bear activating mutations in HRAS Expression of MCOLN1, which encodes TRPML1, is significantly elevated in HRAS-positive tumors and inversely correlated with patient prognosis. Concordantly, MCOLN1 knockdown or TRPML1 inhibition selectively reduces the proliferation of cancer cells that express oncogenic, but not wild-type, HRAS Mechanistically, TRPML1 maintains oncogenic HRAS in signaling-competent nanoclusters at the plasma membrane by mediating cholesterol de-esterification and transport. TRPML1 inhibition disrupts the distribution and levels of cholesterol and thereby attenuates HRAS nanoclustering and plasma membrane abundance, ERK phosphorylation, and cell proliferation. These findings reveal a selective vulnerability of HRAS-driven cancers to TRPML1 inhibition, which may be leveraged as an actionable therapeutic strategy.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Proliferação de Células , Drosophila , Endossomos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Fosforilação , Prognóstico , Transdução de Sinais , Transcriptoma , Canais de Potencial de Receptor Transitório/metabolismo
2.
J Liposome Res ; 26(1): 47-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25865025

RESUMO

CONTEXT: Bevacizumab (BEV) is a monoclonal antibody to vascular endothelial growth factor (VEGF) that ameliorates atheroma progression by inhibiting neovascularization. OBJECTIVE: We aimed to determine whether BEV release from echogenic liposomes (BEV-ELIP) could be enhanced by color Doppler ultrasound (US) and whether the released BEV inhibits VEGF expression by endothelial cells in vitro. MATERIALS AND METHODS: BEV-ELIP samples were subjected to 6 MHz color Doppler ultrasound (MI = 0.4) for 5 min. We assessed release of BEV with a direct ELISA and with fluoresceinated BEV (FITC-BEV) loaded into ELIP by the same method. Human umbilical vein endothelial cell (HUVEC) cultures were stimulated to express VEGF by 10 nM phorbol-12-myristate 13-acetate (PMA). Cell-associated VEGF levels were determined using a cell-based ELISA. RESULTS: Overall, US caused an additional 100 µg of BEV to be released or exposed per BEV-ELIP aliquot within 60 min BEV-ELIP treated with US inhibited VEGF expression by 90% relative to non-treated controls and by 70% relative to BEV-ELIP without US. Also, US-treated BEV-ELIP inhibited HUVEC proliferation by 64% relative to untreated controls and by 45% relative to BEV-ELIP without US. DISCUSSION AND CONCLUSION: We have demonstrated that BEV-ELIP retains its VEGF-binding activity in a liposomal formulation and that clinical Doppler US can significantly increase that activity, both by releasing free BEV and by enhancing the surface exposure of the immunoreactive antibody.


Assuntos
Bevacizumab/administração & dosagem , Bevacizumab/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Ondas Ultrassônicas , Bevacizumab/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Lipossomos , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese
3.
ACS Bio Med Chem Au ; 2(6): 617-626, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37101428

RESUMO

We describe a small molecule ligand ACA-14 (2-hydroxy-5-{[(2-phenylcyclopropyl) carbonyl] amino} benzoic acid) as an initial lead for the development of direct inhibitors of KRAS, a notoriously difficult anticancer drug target. We show that the compound binds to KRAS near the switch regions with affinities in the low micromolar range and exerts different effects on KRAS interactions with binding partners. Specifically, ACA-14 impedes the interaction of KRAS with its effector Raf and reduces both intrinsic and SOS-mediated nucleotide exchange rates. Likely as a result of these effects, ACA-14 inhibits signal transduction through the MAPK pathway in cells expressing mutant KRAS and inhibits the growth of pancreatic and colon cancer cells harboring mutant KRAS. We thus propose compound ACA-14 as a useful initial lead for the development of broad-acting inhibitors that target multiple KRAS mutants and simultaneously deplete the fraction of GTP-loaded KRAS while abrogating the effector-binding ability of the already GTP-loaded fraction.

4.
ACS Omega ; 4(2): 2921-2930, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30842983

RESUMO

Approximately 15% of all human tumors harbor mutant KRAS, a membrane-associated small GTPase and notorious oncogene. Mutations that render KRAS constitutively active will lead to uncontrolled cell growth and cancer. However, despite aggressive efforts in recent years, there are no drugs on the market that directly target KRAS and inhibit its aberrant functions. In the current work, we combined structure-based design with a battery of cell and biophysical assays to discover a novel pyrazolopyrimidine-based allosteric KRAS inhibitor that binds to activated KRAS with sub-micromolar affinity and disrupts effector binding, thereby inhibiting KRAS signaling and cancer cell growth. These results show that pyrazolopyrimidine-based compounds may represent a first-in-class allosteric noncovalent inhibitors of KRAS. Moreover, by studying two of its analogues, we identified key chemical features of the compound that interact with a set of specific residues at the switch regions of KRAS and play critical roles for its high-affinity binding and unique mode of action, thus providing a blueprint for future optimization efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA