Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proteomics ; 24(9): e2300214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38475964

RESUMO

Physical inactivity associated with gravity unloading, such as microgravity during spaceflight and hindlimb unloading (HU), can cause various physiological changes. In this study, we attempted to identify serum proteins whose levels fluctuated in response to gravity unloading. First, we quantitatively assessed changes in the serum proteome profiles of spaceflight mice using mass spectrometry with data-independent acquisition. The serum levels of several proteins involved in the responses to estrogen and glucocorticoid, blood vessel maturation, osteoblast differentiation, and ossification were changed by microgravity exposure. Furthermore, a collective evaluation of serum proteomic data from spaceflight and HU mice identified 30 serum proteins, including Mmp2, Igfbp2, Tnc, Cdh5, and Pmel, whose levels varied to a similar extent in both gravity unloading models. These changes in serum levels could be involved in the physiological changes induced by gravity unloading. A collective evaluation of serum, femur, and soleus muscle proteome data of spaceflight mice also showed 24 serum proteins, including Igfbp5, Igfbp3, and Postn, whose levels could be associated with biological changes induced by microgravity. This study examined serum proteome profiles in response to gravity unloading, and may help deepen our understanding of microgravity adaptation mechanisms during prolonged spaceflight missions.


Assuntos
Proteínas Sanguíneas , Proteômica , Voo Espacial , Ausência de Peso , Animais , Camundongos , Proteômica/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análise , Espectrometria de Massas/métodos , Elevação dos Membros Posteriores , Proteoma/metabolismo , Proteoma/análise , Masculino , Camundongos Endogâmicos C57BL
2.
Proteomics ; 24(10): e2300328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38185763

RESUMO

The molecular mechanisms associated with spaceflight-induced biological adaptations that may affect many healthy tissue functions remain poorly understood. In this study, we analyzed temporal changes in the serum proteome of six astronauts during prolonged spaceflight missions using quantitative comprehensive proteome analysis performed with the data-independent acquisition method of mass spectrometry (DIA-MS). All six astronauts participated in a spaceflight mission for approximately 6 months and showed a decreasing trend in T-scores at almost all sites where dual-energy X-ray absorptiometry scans were performed. DIA-MS successfully identified 624 nonredundant proteins in sera and further quantitative analysis for each sampling point provided information on serum protein profiles closely related to several time points before (pre-), during (in-), and after (post-) spaceflight. Changes in serum protein levels between spaceflight and on the ground suggest that abnormalities in bone metabolism are induced in astronauts during spaceflight. Furthermore, changes in the proteomic profile occurring during spaceflight suggest that serum levels of bone metabolism-related proteins, namely ALPL, COL1A1, SPP1, and POSTN, could serve as highly responsive indicators of bone metabolism status in spaceflight missions. This study will allow us to accelerate research to improve our understanding of the molecular mechanisms of biological adaptations associated with prolonged spaceflight.


Assuntos
Astronautas , Proteoma , Voo Espacial , Humanos , Proteoma/metabolismo , Proteoma/análise , Masculino , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Proteômica/métodos , Pessoa de Meia-Idade , Adulto , Espectrometria de Massas/métodos
3.
Phys Rev Lett ; 130(7): 076401, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867797

RESUMO

Dirac fermion systems form a unique Landau level at the Fermi level-the so-called zero mode-whose observation itself will provide strong evidence of the presence of Dirac dispersions. Here, we report the study of semimetallic black phosphorus under pressure by ^{31}P-nuclear magnetic resonance measurements in a wide range of magnetic field up to 24.0 T. We have found a field-induced giant enhancement of 1/T_{1}T, where 1/T_{1} is the nuclear spin lattice relaxation rate: 1/T_{1}T at 24.0 T reaches more than 20 times larger than that at 2.0 T. The increase in 1/T_{1}T above 6.5 T is approximately proportional to the squared field, implying a linear relationship between the density of states and the field. We also found that, while 1/T_{1}T at a constant field is independent of temperature in the low-temperature region, it steeply increases with temperature above 100 K. All these phenomena are well explained by considering the effect of Landau quantization on three-dimensional Dirac fermions. The present study demonstrates that 1/T_{1} is an excellent quantity to probe the zero-mode Landau level and to identify the dimensionality of the Dirac fermion system.

4.
Biol Pharm Bull ; 46(10): 1484-1489, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37599076

RESUMO

Psoriasis is classically regarded as a T-helper 1 (Th1) response-dominant disease believed to be antagonized by the Th2 response, which is responsible for allergic diseases, such as atopic dermatitis. The roles of these responses in psoriasis and the relationship between psoriasis and atopic dermatitis have received increasing attention because it is estimated that more than one million patients are concomitantly affected by psoriasis and atopic dermatitis. To address this, we attempted to determine the characteristics of imiquimod-induced psoriasiform lesions in mice with a concomitant allergic response after co-application of the unrelated allergen ovalbumin onto the skin. Imiquimod cream containing ovalbumin was successively applied to the right back skin of hairless HR female mice. Psoriasiform scores were determined for 11 d, and then, the resected skin thickness, spleen weight, and serum antibody levels were examined. In some experiments, mice were allowed free access to ovalbumin-containing water for 10 d before skin application to induce oral tolerance. Imiquimod cream induced psoriasis, and its severity increased upon simultaneous ovalbumin treatment. Increases in anti-ovalbumin immunoglobulin G2a (IgG2a) levels, a Th1 response indicator, and IgG1 and IgE levels, Th2 response indicators, were mediated by ovalbumin addition. Oral tolerance against ovalbumin effectively decreased ovalbumin-exacerbated imiquimod-induced psoriasis, in parallel with a decrease in levels of anti-ovalbumin antibodies. These results suggest that the concomitant allergic response induced by ovalbumin application exacerbates imiquimod-induced psoriasis. This implies that allergic responses to unrelated allergens might exacerbate psoriasis in humans and that modulating such responses could be an effective new approach to treat psoriasis.

5.
Proteomics ; 22(7): e2100216, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932266

RESUMO

Information about phosphorylation status can be used to prioritize and characterize biological processes in the cell. Various analytical strategies have been proposed to address the complexity of phosphorylation status and comprehensively identify phosphopeptides. In this study, we evaluated four strategies for phosphopeptide enrichment, using titanium dioxide (TiO2 ) and Phos-tag ligand particles from in-gel or in-solution digests prior to mass spectrometry-based analysis. Using TiO2 and Phos-tag magnetic beads, it was possible to enrich phosphopeptides from in-gel digests of phosphorylated ovalbumin separated by Phos-tag SDS-PAGE or in-solution serum digests, while minimizing non-specific adsorption. The tip-column strategy with TiO2 particles enabled enrichment of phosphopeptides from in-solution digests of whole-cell lysates with high efficiency and selectivity. However, the tip-column strategy with Phos-tag agarose beads yielded the greatest number of identified phosphopeptides. The strategies using both types of tip columns had a high degree of overlap, although there were differences in selectivity between the identified phosphopeptides. Together, our results indicate that multi-enrichment strategies using TiO2 particles and Phos-tag agarose beads are useful for comprehensive phosphoproteomic analysis.


Assuntos
Fosfopeptídeos , Proteômica , Cromatografia de Afinidade/métodos , Espectrometria de Massas , Fosfopeptídeos/análise , Fosforilação , Proteômica/métodos , Titânio/química
6.
Plant Physiol ; 179(4): 1822-1833, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700538

RESUMO

Jasmonic acid (JA) plays an important role in the induction of herbivore resistance in many plants. However, JA-independent herbivore resistance has been suggested. An herbivore-resistance-inducing substance was isolated from Tobacco mosaic virus-infected tobacco (Nicotiana tabacum) leaves in which a hypersensitive response (HR) was induced and identified as loliolide, which has been identified as a ß-carotene metabolite. When applied to tomato (Solanum lycopersicum) leaves, loliolide decreased the survival rate of the two-spotted spider mite, Tetranychus urticae, egg deposition by the same pest, and the survival rate of larvae of the common cutworm Spodoptera litura without exhibiting toxicity against these herbivores. Endogenous loliolide levels increased not only with an infestation by S litura larvae, but also with the exogenous application of their oral secretions in tomato. A microarray analysis identified cell-wall-associated defense genes as loliolide-responsive tomato genes, and exogenous JA application did not induce the expression of these genes. Suppressor of zeaxanthin-less (szl), an Arabidopsis (Arabidopsis thaliana) mutant with a point mutation in a key gene of the ß-carotene metabolic pathway, exhibited the decreased accumulation of endogenous loliolide and increased susceptibility to infestation by the western flower thrip (Frankliniella occidentalis). A pretreatment with loliolide decreased susceptibility to thrips in the JA-insensitive Arabidopsis mutant coronatine-insensitive1 Exogenous loliolide did not restore reduced electrolyte leakage in szl in response to a HR-inducing bacterial strain. These results suggest that loliolide functions as an endogenous signal that mediates defense responses to herbivores, possibly independently of JA, at least in tomato and Arabidopsis plants.


Assuntos
Benzofuranos/metabolismo , Herbivoria , Nicotiana/química , Animais , Arabidopsis/efeitos dos fármacos , Benzofuranos/química , Benzofuranos/isolamento & purificação , Carotenoides/metabolismo , Morte Celular , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/parasitologia , Spodoptera/fisiologia , Tetranychidae/fisiologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco
7.
Nano Lett ; 14(11): 6437-42, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25302572

RESUMO

We report across-bandgap p-type and n-type control over the Seebeck coefficients of semiconducting single-wall carbon nanotube networks through an electric double layer transistor setup using an ionic liquid as the electrolyte. All-around gating characteristics by electric double layer formation upon the surface of the nanotubes enabled the tuning of the Seebeck coefficient of the nanotube networks by the shift in gate voltage, which opened the path to Fermi-level-controlled three-dimensional thermoelectric devices composed of one-dimensional nanomaterials.

8.
Plant J ; 73(5): 761-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23167462

RESUMO

Plants adapt to abiotic and biotic stresses by activating abscisic acid-mediated (ABA) abiotic stress-responsive and salicylic acid-(SA) or jasmonic acid-mediated (JA) biotic stress-responsive pathways, respectively. Although the abiotic stress-responsive pathway interacts antagonistically with the biotic stress-responsive pathways, the mechanisms that regulate these pathways remain largely unknown. In this study, we provide insight into the function of vascular plant one-zinc-finger proteins (VOZs) that modulate various stress responses in Arabidopsis. The expression of many stress-responsive genes was changed in the voz1voz2 double mutant under normal growth conditions. Consistent with altered stress-responsive gene expression, freezing- and drought-stress tolerances were increased in the voz1voz2 double mutant. In contrast, resistance to a fungal pathogen, Colletotrichum higginsianum, and to a bacterial pathogen, Pseudomonas syringae, was severely impaired. Thus, impairing VOZ function simultaneously conferred increased abiotic tolerance and biotic stress susceptibility. In a chilling stress condition, both the VOZ1 and VOZ2 mRNA expression levels and the VOZ2 protein level gradually decreased. VOZ2 degradation during cold exposure was completely inhibited by the addition of the 26S proteasome inhibitor, MG132, a finding that suggested that VOZ2 degradation is dependent on the ubiquitin/26S proteasome system. In voz1voz2, ABA-inducible transcription factor CBF4 expression was enhanced significantly even under normal growth conditions, despite an unchanged endogenous ABA content. A finding that suggested that VOZs negatively affect CBF4 expression in an ABA-independent manner. These results suggest that VOZs function as both negative and positive regulators of the abiotic and biotic stress-responsive pathways, and control Arabidopsis adaptation to various stress conditions.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Colletotrichum/fisiologia , Inibidores de Cisteína Proteinase/farmacologia , Regulação para Baixo , Secas , Congelamento , Perfilação da Expressão Gênica , Leupeptinas/farmacologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/microbiologia , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia , Estresse Fisiológico , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
9.
Biotechnol Lett ; 36(5): 1049-57, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24563287

RESUMO

Plant growth and development require proper cell wall organization but little is known about the transcription factors responsible for the regulation of gene expression involved in cell wall organization. Here we show, using Arabidopsis thaliana, that constitutive expression of the chimeric repressor for the MYB87 transcription factor causes suppression of longitudinal elongation, aberrant radial growth, and radially expanded or swollen cells in multiple organs. Microarray analysis revealed that plants expressing the chimeric repressor have altered expression of various cell wall related genes. MYB87 may therefore function as a regulator of genes affecting cell wall organization and remodeling. These findings improve our understanding of cell wall regulation and its roles in plant growth and development and also contribute information that may allow engineering of plant growth and architecture.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Parede Celular/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Inativação Gênica , Vetores Genéticos , Plântula , Fatores de Transcrição/genética
10.
J Proteomics ; 300: 105166, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38574990

RESUMO

Osteoporosis is characterized by weakened bone microstructure and loss of bone mass. Current diagnostic criteria for osteoporosis are based on the T-score, which is a measure of bone mineral density. However, osteoporotic fragility fractures can occur regardless of the T-score, underscoring the need for additional criteria for the early detection of patients at fracture risk. To identify indicators of reduced bone strength, we performed serum proteomic analysis using data-independent acquisition mass spectrometry with serum samples from two patient groups, one with osteoporosis but no fractures and the other with osteopenia and fragility fractures. Collective evaluation of the results identified six serum proteins that changed to a similar extent in both patient groups compared with controls. Of these, extracellular matrix protein 1 (ECM1), which contributes to bone formation, showed the most significant increase in serum levels in both patient groups. An ELISA-based assay suggested that ECM1 could serve as a serum indicator of the need for therapeutic intervention; however, further prospective studies with a larger sample size are necessary to confirm these results. The present findings may contribute to the provision of early and appropriate therapeutic strategies for patients at risk of osteoporotic fractures. SIGNIFICANCE: This study aimed to identify objective serum indicators of the need for therapeutic intervention in individuals at risk of osteoporotic fracture. Comprehensive proteome analyses of serum collected from patients with osteoporosis but no fractures, patients with osteopenia and fragility fractures, and controls were performed by data-independent acquisition mass spectrometry. Collective evaluation of the proteome analysis data and ELISA-based assays identified serum ECM1 as a potential objective marker of the risk of fragility fractures in patients with osteoporosis or osteopenia. The findings are an important step toward the development of appropriate bone health management methods to improve well-being and maintain quality of life.


Assuntos
Biomarcadores , Espectrometria de Massas , Osteoporose , Fraturas por Osteoporose , Humanos , Osteoporose/sangue , Feminino , Idoso , Fraturas por Osteoporose/sangue , Biomarcadores/sangue , Espectrometria de Massas/métodos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Densidade Óssea , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/diagnóstico , Proteínas da Matriz Extracelular/sangue , Proteínas Sanguíneas/análise , Idoso de 80 Anos ou mais , Proteoma/análise , Proteoma/metabolismo
11.
J Pharm Biomed Anal ; 233: 115442, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37182365

RESUMO

The stability of active pharmaceutical ingredients (APIs) and formulations has become a major chemistry, manufacturing, and control (CMC) concern in the pharmaceutical industry because it can determine the feasibility of research and development, the development period, and the development costs of a certain formulation. To streamline the research and development of pharmaceutical products and create useful pharmaceutical products at an early stage, a technology that predicts the stability of formulations at an early stage and with a high degree of accuracy is needed. When predicting the stability of a substance, highly reliable data are required; however, the stability data are affected by analytical variations that depend on the experimenter, measurement device, and conditions used. Although these variations greatly affect the prediction accuracy, a stability prediction method that considers these variations has not yet been developed. Here, short-term stability data under accelerated conditions were obtained at three institutions using silodosin tablets as a model sample. By combining Bayesian inference with the temporal change in the amount of the main degradation products obtained and the conventional humidity-corrected Arrhenius equation, we developed a new algorithm that provides a narrow confidence interval, even when using data with variations. By using this algorithm and setting an appropriate number of conditions, we were able to obtain a valid confidence intervals in a short period of time. Here, by performing more measurements than those suggested by the minimum measurement frequency indicated in the guideline specified in the International Council for Harmonisation (ICH) of Technical Requirements for Pharmaceuticals for Human Use, we developed a method that can be used to reasonably predict the long-term stability of the drugs, even if the data measurement interval is short. Our results will help solve various problems in today's pharmaceutical product development scenario and contribute to worldwide health and welfare.


Assuntos
Algoritmos , Humanos , Estabilidade de Medicamentos , Teorema de Bayes , Comprimidos/química
12.
Sci Rep ; 13(1): 15768, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737267

RESUMO

Gravity-dependent physical processes strongly affect the ability of elderly people to maintain musculoskeletal health by reducing muscle atrophy and increasing bone mineral density, thereby increasing quality of life. A need therefore exists to identify molecules in the musculoskeletal system that are responsive to gravitational loading and to establish an objective indicator for the maintenance of healthy musculoskeletal systems. Here, we performed an integrated assessment of the results of soleus muscle proteomic analyses in three model mouse experiments under different gravity environments (hypergravity, hindlimb unloading, and spaceflight). Myl6b, Gpd1, Fbp2, Pvalb, and Actn3 were shown to be gravity-responsive muscle proteins, and alterations in the levels of these proteins indicated changes in muscle fiber type to slow-twitch type due to gravity loading. In addition, immunoblotting and enzyme-linked immunosorbent assays revealed that Pvalb levels in the sera of hindlimb-unloaded mice and osteoporosis patients were higher than in control subjects, suggesting that Pvalb levels might be useful to objectively evaluate soleus muscle atrophy and bone loss.


Assuntos
Proteômica , Qualidade de Vida , Idoso , Humanos , Animais , Camundongos , Atrofia Muscular , Proteínas Musculares , Fibras Musculares Esqueléticas , Actinina
13.
J Proteomics ; 288: 104976, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37482271

RESUMO

Although the microgravity (µ-g) environment that astronauts encounter during spaceflight can cause severe acute bone loss, the molecular mechanism of this bone loss remains unclear. To investigate the gravity-response proteins involved in bone metabolism, it is important to comprehensively determine which proteins exhibit differential abundance associated with mechanical stimuli. However, comprehensive proteomic analysis using small bone samples is difficult because protein extraction in mineralized bone tissue is inefficient. Here, we established a high-sensitivity analysis system for mouse bone proteins using data-independent acquisition mass spectrometry. This system successfully detected 40 proteins in the femoral diaphysis showing differential abundance between mice raised in a µ-g environment, where the bone mass was reduced by gravity unloading, and mice raised in an artificial 1-gravity environment on the International Space Station. Additionally, 22 proteins, including noncollagenous bone matrix proteins, showed similar abundance between the two groups in the mandible, where bone mass was unaltered due to mastication stimuli, suggesting that these proteins are responsive to mechanical stimuli. One of these proteins, SPARCL1, is suggested to promote osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand. We expect these findings to lead to new insights into the mechanisms of bone metabolism induced by mechanical stimuli. SIGNIFICANCE: We aimed to investigate the gravity-response proteins involved in bone metabolism. To this end, we established a comprehensive analysis system for mouse bone proteins using data-independent acquisition mass spectrometry, which is particularly useful in comprehensively analyzing the bone proteome using small sample volumes. In addition, a comprehensive proteomic analysis of the femoral diaphysis and mandible, which exhibit different degrees of bone loss in mice raised on the International Space Station, identified proteins that respond to mechanical stimuli. SPARCL1, a mechanical stimulus-responsive protein, was consequently suggested to be involved in osteoclast differentiation associated with bone remodeling. Our findings represent an important step toward elucidating the molecular mechanism of bone metabolism induced by mechanical stimuli.


Assuntos
Voo Espacial , Ausência de Peso , Camundongos , Animais , Proteômica , Fêmur , Proteoma
14.
Front Cell Dev Biol ; 11: 1275519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089883

RESUMO

Primary central nervous system lymphoma (PCNSL) is a malignant neoplasm of the central nervous system that is refractory to treatment and has extremely poor prognosis. One factor hindering the development of therapeutic options for PCNSL is its molecular heterogeneity and the extreme difficulty in establishing in vitro cell lines that permit intensive research on this disease. In the present study, we developed a method to propagate PCNSL cells in vitro using a contacting transwell cell culture system involving brain vascular pericytes. The co-culture system was found to recapitulate the tumor microenvironment that is influenced by the biological activity of adjacent pericytes, and to sustain the survival and proliferation of PCNSL cells in vitro. We further delineated the underlying molecular mechanisms and found that the HGF-c-Met axis may be involved in the long-term in vitro culture of PCNSL cells. Moreover, the peptidylprolyl isomerase Pin1 was found to play a key role in PCNSL cell survival and it sustained proliferation through interactions with key transcription factors related to B-cell lymphomagenesis. These results suggest that our in vitro co-culture system is well suited to analyzing the biological and molecular characteristics of PCNSL, and may contribute to the discovery of new therapeutic interventions.

15.
Microorganisms ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36557634

RESUMO

Hepatitis B virus (HBV) core antigen (HBc) is a structural protein that forms the viral nucleocapsid and is involved in various steps of the viral replication cycle, but its role in the pathogenesis of HBV infection is still elusive. In this study, we generated a mouse monoclonal antibody (mAb) against HBc and used it in antibody-based in situ biotinylation analysis in order to identify host proteins that interact with HBc. HBc antigen was produced with a wheat germ cell-free protein synthesis system and used to immunize mice. Among the established hybridoma clones, a single clone (mAb #7) was selected and further characterized for its ability in the antibody-based in situ biotinylation analysis to collect host proteins that are in the vicinity of HBc. Using mass spectrometry, we identified 215 HBc-interacting host proteins, three of which bind HBc most significantly under hypoxic conditions. Our results indicate that mAb #7 can be used to systematically identify host proteins that interact with HBc under pathophysiological conditions, and thus may be useful to explore the molecular pathways involved in HBV-induced cytopathogenesis.

16.
Plant Environ Interact ; 3(4): 179-192, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37283610

RESUMO

Some cultivars of lettuce accumulate anthocyanins, which act as functional food ingredients. Leaf lettuce has been known to be erratic in exhibiting red color when grown under artificial light, and there is a need for cultivars that more stably exhibit red color in artificial light cultivation. In this study, we aimed to dissect the genetic architecture for red coloring in various leaf lettuce cultivars grown under artificial light. We investigated the genotype of Red Lettuce Leaf (RLL) genes in 133 leaf lettuce strains, some of which were obtained from publicly available resequencing data. By studying the allelic combination of RLL genes, we further analyzed the contribution of these genes to producing red coloring in leaf lettuce. From the quantification of phenolic compounds and corresponding transcriptome data, we revealed that gene expression level-dependent regulation of RLL1 (bHLH) and RLL2 (MYB) is the underlying mechanism conferring high anthocyanin accumulation in red leaf lettuce under artificial light cultivation. Our data suggest that different combinations of RLL genotypes cause quantitative differences in anthocyanin accumulation among cultivars, and some genotype combinations are more effective at producing red coloration even under artificial lighting.

17.
Viruses ; 14(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35891395

RESUMO

Human Norwalk viruses (HuNoVs), the most common etiological agents of acute gastroenteritis, are genetically diverse RNA viruses that frequently cause mass food poisoning internationally. Although nucleic acid detection methods, such as reverse transcription-quantitative polymerase chain reaction (RT-qPCR), are the gold standard for the diagnosis of norovirus infection, alternative methods are needed for the specific and sensitive viral protein detection for rapid diagnosis and surveillance. In this study, we developed a robust and high-throughput targeted proteomic assay workflow to directly detect the VP1 major capsid protein of HuNoVs. A parallel reaction monitoring (PRM) assay using a high-resolution mass spectrometer was used to detect representative peptides derived from VP1 in six different HuNoV genotypes. An optimized protocol using synthesized heavy isotope-labeled peptides as internal standards was also used to simultaneously genotype and quantify the VP1 protein in human stool specimens. This method is expected to become a new tool for studying the molecular epidemiology of HuNoV and to shed new light on targeted proteomics in clinical practice.


Assuntos
Infecções por Caliciviridae , Norovirus , Proteínas do Capsídeo/genética , Humanos , Espectrometria de Massas , Norovirus/genética , Proteômica
18.
NPJ Microgravity ; 7(1): 34, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535681

RESUMO

Short-chain fatty acids produced by the gut bacterial fermentation of non-digestible carbohydrates, e.g., fructo-oligosaccharide (FOS), contribute to the maintenance of skeletal muscle mass and oxidative metabolic capacity. We evaluated the effect of FOS ingestion on protein expression of soleus (Sol) and extensor digitorum longus muscles in mice exposed to microgravity (µ-g). Twelve 9-week-old male C57BL/6J mice were raised individually on the International Space Station under µ-g or artificial 1-g and fed a diet with or without FOS (n = 3/group). Regardless of FOS ingestion, the absolute wet weights of both muscles tended to decrease, and the fiber phenotype in Sol muscles shifted toward fast-twitch type following µ-g exposure. However, FOS ingestion tended to mitigate the µ-g-exposure-related decrease in oxidative metabolism and enhance glutathione redox detoxification in Sol muscles. These results indicate that FOS ingestion mildly suppresses metabolic changes and oxidative stress in antigravity Sol muscles during spaceflight.

19.
Sci Rep ; 11(1): 20638, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667241

RESUMO

The COVID-19 pandemic is an unprecedented threat to humanity that has provoked global health concerns. Since the etiopathogenesis of this illness is not fully characterized, the prognostic factors enabling treatment decisions have not been well documented. Accurately predicting the progression of the disease would aid in appropriate patient categorization and thus help determine the best treatment option. Here, we have introduced a proteomic approach utilizing data-independent acquisition mass spectrometry (DIA-MS) to identify the serum proteins that are closely associated with COVID-19 prognosis. Twenty-seven proteins were differentially expressed between severely ill COVID-19 patients with an adverse or favorable prognosis. Ingenuity Pathway Analysis revealed that 15 of the 27 proteins might be regulated by cytokine signaling relevant to interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF), and their differential expression was implicated in the systemic inflammatory response and in cardiovascular disorders. We further evaluated practical predictors of the clinical prognosis of severe COVID-19 patients. Subsequent ELISA assays revealed that CHI3L1 and IGFALS may serve as highly sensitive prognostic markers. Our findings can help formulate a diagnostic approach for accurately identifying COVID-19 patients with severe disease and for providing appropriate treatment based on their predicted prognosis.


Assuntos
Biomarcadores/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/sangue , Perfilação da Expressão Gênica , Proteômica/métodos , Proteína 1 Semelhante à Quitinase-3/metabolismo , Ensaio de Imunoadsorção Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica , Humanos , Inflamação , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Prognóstico , SARS-CoV-2 , Fator de Necrose Tumoral alfa/biossíntese , Viroses
20.
Chem Asian J ; 15(2): 273-278, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31778278

RESUMO

In a tight host-guest complex assembled solely by nondirectional van der Waals forces, unique motions of the guest, such as solid-state inertial rotations, emerge. The regulation of dynamic motions is an important element to be explored for novel functions of such complexes, which may be seemingly difficult to achieve because of the nondirectionality of the assembling forces. A regulated, single-axis rotation was made possible by choosing an appropriate shape of the guest in the tubular host. Specifically, an ellipsoidal guest was made to stand along a cylinder axis of the host, which consequently resulted in single-axis rotations of the guest in the solid. The rotational frequency was considerably high for solid-state rotations but was suppressed to 10 GHz, which was 1/20 of the isotropic rotation of a spherical guest. In-depth kinetic analyses quantitatively revealed that the entropy cost was a determining factor that regulated the dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA