Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Ann Neurol ; 95(3): 607-613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062616

RESUMO

Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) is a late-onset, autosomal recessive neurodegenerative disorder caused by biallelic AAGGG/ACAGG repeat expansion (AAGGG-exp/ACAGG-exp) in RFC1. The recent identification of patients with CANVAS exhibiting compound heterozygosity for AAGGG-exp and truncating variants supports the loss-of-function of RFC1 in CANVAS patients. We investigated the pathological changes in 2 autopsied patients with CANVAS harboring biallelic ACAGG-exp and AAGGG-exp. RNA fluorescence in situ hybridization of the 2 patients revealed CCTGT- and CCCTT-containing RNA foci, respectively, in neuronal nuclei of tissues with neuronal loss. Our findings suggest that RNA toxicity may be involved in the pathogenesis of CANVAS. ANN NEUROL 2024;95:607-613.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Humanos , Ataxia Cerebelar/genética , Hibridização in Situ Fluorescente , RNA , Síndrome
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330827

RESUMO

There are no validated biomarkers for schizophrenia (SCZ), a disorder linked to neural network dysfunction. We demonstrate that collapsin response mediator protein-2 (CRMP2), a master regulator of cytoskeleton and, hence, neural circuitry, may form the basis for a biomarker because its activity is uniquely imbalanced in SCZ patients. CRMP2's activity depends upon its phosphorylation state. While an equilibrium between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is present in unaffected individuals, we show that SCZ patients are characterized by excess active CRMP2. We examined CRMP2 levels first in postmortem brains (correlated with neuronal morphometrics) and then, because CRMP2 is expressed in lymphocytes as well, in the peripheral blood of SCZ patients versus age-matched unaffected controls. In the brains and, more starkly, in the lymphocytes of SCZ patients <40 y old, we observed that nonphosphorylated CRMP2 was higher than in controls, while phosphorylated CRMP2 remained unchanged from control. In the brain, these changes were associated with dendritic structural abnormalities. The abundance of active CRMP2 with insufficient opposing inactive p-CRMP2 yielded a unique lowering of the p-CRMP2:CRMP2 ratio in SCZ patients, implying a disruption in the normal equilibrium between active and inactive CRMP2. These clinical data suggest that measuring CRMP2 and p-CRMP2 in peripheral blood might reflect intracerebral processes and suggest a rapid, minimally invasive, sensitive, and specific adjunctive diagnostic aid for early SCZ: increased CRMP2 or a decreased p-CRMP2:CRMP2 ratio may help cinch the diagnosis in a newly presenting young patient suspected of SCZ (versus such mimics as mania in bipolar disorder, where the ratio is high).


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia/diagnóstico , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas do Tecido Nervoso/genética
3.
J Hum Genet ; 65(5): 475-480, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32066831

RESUMO

Recently, a recessively inherited intronic repeat expansion in replication factor C1 (RFC1) was identified in cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Here, we describe a Japanese case of genetically confirmed CANVAS with autonomic failure and auditory hallucination. The case showed impaired uptake of iodine-123-metaiodobenzylguanidine and 123I-ioflupane in the cardiac sympathetic nerve and dopaminergic neurons, respectively, by single-photon emission computed tomography. Long-read sequencing identified biallelic pathogenic (AAGGG)n nucleotide repeat expansion in RFC1 and heterozygous benign (TAAAA)n and (TAGAA)n expansions in brain expressed, associated with NEDD4 (BEAN1). Enrichment of the repeat regions in RFC1 and BEAN1 using a Cas9-mediated system clearly distinguished between pathogenic and benign repeat expansions. The haplotype around RFC1 indicated that the (AAGGG)n expansion in our case was on the same ancestral allele as that of European cases. Thus, long-read sequencing facilitates precise genetic diagnosis of diseases with complex repeat structures and various expansions.


Assuntos
Vestibulopatia Bilateral/genética , Ataxia Cerebelar/genética , Expansão das Repetições de DNA , Proteína de Replicação C/genética , Análise de Sequência de DNA , Idoso de 80 Anos ou mais , Povo Asiático , Vestibulopatia Bilateral/diagnóstico , Ataxia Cerebelar/diagnóstico , Feminino , Humanos , Japão , Ubiquitina-Proteína Ligases Nedd4/genética
4.
Ann Neurol ; 86(6): 962-968, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433517

RESUMO

Leukoencephalopathies comprise a broad spectrum of disorders, but the genetic background of adult leukoencephalopathies has rarely been assessed. In this study, we analyzed 101 Japanese patients with genetically unresolved adult leukoencephalopathy using whole-exome sequencing and repeat-primed polymerase chain reaction for detecting GGC expansion in NOTCH2NLC. NOTCH2NLC was recently identified as the cause of neuronal intranuclear inclusion disease. We found 12 patients with GGC expansion in NOTCH2NLC as the most frequent cause of adult leukoencephalopathy followed by NOTCH3 variants in our cohort. Furthermore, we found 1 case with de novo GGC expansion, which might explain the underlying pathogenesis of sporadic cases. ANN NEUROL 2019;86:962-968.


Assuntos
Variação Genética/genética , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Receptor Notch2/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Proc Natl Acad Sci U S A ; 114(22): E4462-E4471, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28500272

RESUMO

The molecular pathogenesis of bipolar disorder (BPD) is poorly understood. Using human-induced pluripotent stem cells (hiPSCs) to unravel such mechanisms in polygenic diseases is generally challenging. However, hiPSCs from BPD patients responsive to lithium offered unique opportunities to discern lithium's target and hence gain molecular insight into BPD. By profiling the proteomics of BDP-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). Active nonphosphorylated CRMP2, which binds cytoskeleton, is present throughout the neuron; inactive phosphorylated CRMP2, which dissociates from cytoskeleton, exits dendritic spines. CRMP2 elimination yields aberrant dendritogenesis with diminished spine density and lost lithium responsiveness (LiR). The "set-point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from LiR BPD patients, but not with other psychiatric (including lithium-nonresponsive BPD) and neurological disorders. Lithium (and other pathway modulators) lowers pCRMP2, increasing spine area and density. Human BPD brains show similarly elevated ratios and diminished spine densities; lithium therapy normalizes the ratios and spines. Consistent with such "spine-opathies," human LiR BPD neurons with abnormal ratios evince abnormally steep slopes for calcium flux; lithium normalizes both. Behaviorally, transgenic mice that reproduce lithium's postulated site-of-action in dephosphorylating CRMP2 emulate LiR in BPD. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in spines, modulating neural networks. Aberrations in the posttranslational regulation of this developmentally critical molecule may underlie LiR BPD pathogenesis. Instructively, examining the proteomic profile in hiPSCs of a functional agent-even one whose mechanism-of-action is unknown-might reveal otherwise inscrutable intracellular pathogenic pathways.


Assuntos
Transtorno Bipolar , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Lítio/farmacologia , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Química Encefálica , Cálcio/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteômica
6.
Neurobiol Dis ; 132: 104603, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31494281

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disease characterized by memory loss and neurotoxic amyloid beta (Aß) plaques accumulation. Numerous pharmacological interventions targeting Aß plaques accumulation have failed to alleviate AD. Also, the pathological alterations in AD start years before the onset of clinical symptoms. To identify proteins at play during the early stage of AD, we conducted proteomic analysis of the hippocampus of young AppNL-F mice model of AD at the preclinical phase of the disease. This was followed by interactome ranking of the proteome into hubs that were further validated in vivo using immunoblot analysis. We also performed double-immunolabeling of these hub proteins and Aß to quantify colocalization. Behavioral analysis revealed no significant difference in memory performance between 8-month-old AppNL-F and control mice. The upregulation and downregulation of several proteins were observed in the AppNL-F mice compared to control. These proteins corresponded to pathways and processes related to Aß clearance, inflammatory-immune response, transport, mitochondrial metabolism, and glial cell proliferation. Interactome analysis revealed several proteins including DLGP5, DDX49, CCDC85A, ADCY6, HEPACAM, HCN3, PPT1 and TNPO1 as essential proteins in the AppNL-F interactome. Validation by immunoblot confirmed the over-expression of these proteins except HCN3 in the early-stage AD mice hippocampus. Immunolabeling revealed a significant increase in ADCY6/Aß and HEPACAM/Aß colocalized puncta in AppNL-F mice compared to WT. These data suggest that these proteins may be involved in the early stage of AD. Our work suggests new targets and biomarkers for AD diagnosis and therapeutic intervention.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Neurobiol Dis ; 130: 104516, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31229688

RESUMO

Spinocerebellar ataxia 42 (SCA42) is a neurodegenerative disorder recently shown to be caused by c.5144G > A (p.Arg1715His) mutation in CACNA1G, which encodes the T-type voltage-gated calcium channel CaV3.1. Here, we describe a large Japanese family with SCA42. Postmortem pathological examination revealed severe cerebellar degeneration with prominent Purkinje cell loss without ubiquitin accumulation in an SCA42 patient. To determine whether this mutation causes ataxic symptoms and neurodegeneration, we generated knock-in mice harboring c.5168G > A (p.Arg1723His) mutation in Cacna1g, corresponding to the mutation identified in the SCA42 family. Both heterozygous and homozygous mutants developed an ataxic phenotype from the age of 11-20 weeks and showed Purkinje cell loss at 50 weeks old. Degenerative change of Purkinje cells and atrophic thinning of the molecular layer were conspicuous in homozygous knock-in mice. Electrophysiological analysis of Purkinje cells using acute cerebellar slices from young mice showed that the point mutation altered the voltage dependence of CaV3.1 channel activation and reduced the rebound action potentials after hyperpolarization, although it did not significantly affect the basic properties of synaptic transmission onto Purkinje cells. Finally, we revealed that the resonance of membrane potential of neurons in the inferior olivary nucleus was decreased in knock-in mice, which indicates that p.Arg1723His CaV3.1 mutation affects climbing fiber signaling to Purkinje cells. Altogether, our study shows not only that a point mutation in CACNA1G causes an ataxic phenotype and Purkinje cell degeneration in a mouse model, but also that the electrophysiological abnormalities at an early stage of SCA42 precede Purkinje cell loss.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Cerebelo/metabolismo , Fenótipo , Células de Purkinje/metabolismo , Ataxias Espinocerebelares/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Canais de Cálcio Tipo T/genética , Cerebelo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Células de Purkinje/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
8.
J Neuroinflammation ; 15(1): 46, 2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29454354

RESUMO

BACKGROUND: Although inflammation in the central nervous system is responsible for multiple neurological diseases, the lack of appropriate biomarkers makes it difficult to evaluate inflammatory activities in these diseases. Therefore, a new biomarker reflecting neuroinflammation is required for accurate diagnosis, appropriate therapy, and comprehension of pathogenesis of these neurological disorders. We previously reported that the cerebrospinal fluid (CSF) concentration of lateral olfactory tract usher substance (LOTUS), which promotes axonal growth as a Nogo receptor 1 antagonist, negatively correlates with disease activity in multiple sclerosis, suggesting that variation in LOTUS reflects the inflammatory activities and is a useful biomarker to evaluate the disease activity. To extend this observation, we analyzed the variation of LOTUS in the CSF of patients with bacterial and viral meningitis, which are the most common neuroinflammatory diseases. METHODS: CSF samples were retrospectively obtained from patients with meningitis (n = 40), who were followed up by CSF study at least twice, and from healthy controls (n = 27). Patients were divided into bacterial (n = 14) and viral meningitis (n = 18) after exclusion of eight patients according to the criteria of this study. LOTUS concentrations, total protein levels, and CSF cell counts in the acute and recovery phases were analyzed chronologically. We also used lipopolysaccharide-injected mice as a model of neuroinflammation to evaluate LOTUS mRNA and protein expression in the brain. RESULTS: Regardless of whether meningitis was viral or bacterial, LOTUS concentrations in the CSF of patients in acute phase were lower than those of healthy controls. As the patients recovered from meningitis, LOTUS levels in the CSF returned to the normal range. Lipopolysaccharide-injected mice also exhibited reduced LOTUS mRNA and protein expression in the brain. CONCLUSIONS: CSF levels of LOTUS correlated inversely with disease activity in both bacterial and viral meningitis, as well as in multiple sclerosis, because neuroinflammation downregulated LOTUS expression. Our data strongly suggest that variation of CSF LOTUS is associated with neuroinflammation and is useful as a biomarker for a broader range of neuroinflammatory diseases.


Assuntos
Proteínas de Ligação ao Cálcio/líquido cefalorraquidiano , Meningite/líquido cefalorraquidiano , Meningite/diagnóstico , Receptor Nogo 1/antagonistas & inibidores , Receptor Nogo 1/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/líquido cefalorraquidiano , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
9.
Genes Cells ; 21(9): 994-1005, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27480924

RESUMO

Collapsin response mediator protein 2, CRMP2, has been identified as an intracellular signaling mediator for Semaphorin 3A (Sema3A). CRMP2 plays a key role in axon guidance, dendritic morphogenesis, and cell polarization. It has been also implicated in a variety of neurological and psychiatric disorders. However, the in vivo functions of CRMP2 remain unknown. We generated CRMP2 gene-deficient (crmp2(-/-) ) mice. The crmp2(-/-) mice showed irregular development of dendritic spines in cortical neurons. The density of dendritic spines was reduced in the cortical layer V pyramidal neurons of crmp2(-/-) mice as well as in those of sema3A(-/-) and crmp1(-/-) mice. However, no abnormality was found in dendritic patterning in crmp2(-/-) compared to wild-type (WT) neurons. The level of CRMP1 was increased in crmp2(-/-) , but the level of CRMP2 was not altered in crmp1(-/-) compared to WT cortical brain lysates. Dendritic spine density and branching were reduced in double-heterozygous sema3A(+/-) ;crmp2(+/-) and sema3A(+/-) ;crmp1(+/-) mice. The phenotypic defects had no genetic interaction between crmp1 and crmp2. These findings suggest that both CRMP1 and CRMP2 mediate Sema3A signaling to regulate dendritic spine maturation and patterning, but through overlapping and distinct signaling pathways.


Assuntos
Dendritos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Contagem de Células , Células Cultivadas , Córtex Cerebral/citologia , Dendritos/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Semaforina-3A/genética , Semaforina-3A/metabolismo , Transdução de Sinais/fisiologia
10.
Genes Cells ; 21(10): 1059-1079, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27582038

RESUMO

Collapsin response mediator protein 2 (CRMP2) plays a key role in axon guidance, dendritic morphogenesis and cell polarization. CRMP2 is implicated in various neurological and psychiatric disorders. However, in vivo functions of CRMP2 remain unknown. We generated CRMP2 gene-deficient (crmp2-/- ) mice and examined their behavioral phenotypes. During 24-h home cage monitoring, the activity level during the dark phase of crmp2-/- mice was significantly higher than that of wild-type (WT) mice. Moreover, the time during the open arm of an elevated plus maze was longer for crmp2-/- mice than for WT mice. The duration of social interaction was shorter for crmp2-/- mice than for WT mice. Crmp2-/- mice also showed mild impaired contextual learning. We then examined the methamphetamine-induced behavioral change of crmp2-/- mice. Crmp2-/- mice showed increased methamphetamine-induced ambulatory activity and serotonin release. Crmp2-/- mice also showed altered expression of proteins involved in GABAergic synapse, glutamatergic synapse and neurotrophin signaling pathways. In addition, SNAP25, RAB18, FABP5, ARF5 and LDHA, which are related genes to schizophrenia and methamphetamine sensitization, are also decreased in crmp2-/- mice. Our study implies that dysregulation of CRMP2 may be involved in pathophysiology of neuropsychiatric disorders.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transtornos Mentais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Doenças do Sistema Nervoso/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Deficiências da Aprendizagem/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , Proteoma
11.
J Pharmacol Sci ; 128(4): 170-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26232861

RESUMO

Induced pluripotent stem (iPS) cells are promising tools to investigate disease mechanism and develop new drugs. Intraneuronal transport, which is fundamental for neuronal survival and function, is vulnerable to various pharmacological and chemical agents and is disrupted in some neurodegenerative disorders. We applied a quantification method for axonal transport by counting CM-DiI-labeled particles traveling along the neurite, which allowed us to monitor and quantitate, for the first time, intraneuronal transport in human neurons differentiated from iPS cells (iCell neurons). We evaluated the acute effects of several anti-neoplastic agents that have been previously shown to affect intraneuronal transport. Vincristine, paclitaxel and oxaliplatin decreased the number of moving particle along neurites. Cisplatin, however, produced no effect on intraneuronal transport, which is in contrast to our previous report indicating that it inhibits transport in chick dorsal root ganglion neurons. Our system may be a useful method for assessing intraneuronal transport and neurotoxicity in human iPS neurons.


Assuntos
Transporte Axonal/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurônios/metabolismo , Animais , Antineoplásicos/farmacologia , Transporte Axonal/efeitos dos fármacos , Células Cultivadas , Galinhas , Cisplatino/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Humanos , Neuritos/metabolismo , Neurônios/citologia , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Paclitaxel/farmacologia , Vincristina/farmacologia
12.
J Stroke Cerebrovasc Dis ; 24(5): e121-3, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25817621

RESUMO

A 59-year-old man who had hypertension, dyslipidemia, diabetes mellitus, and left eye glaucoma developed sudden vertigo and left ptosis; he did not notice diplopia. He visited our hospital on day 3 after onset and neurologic examination showed left ptosis. His left visual acuity was counting fingers, and the light reflex was sluggish owing to glaucoma. Pupil sizes were equal, and eye movements and the lower lid were unremarkable. Magnetic resonance images revealed an acute infarction of the left paramedian midbrain. We considered that selective damage to the oculomotor fascicles innervating the left levator palpebrae superioris caused ipsilateral ptosis. As the fascicles for this ocular muscle run in the small area adjacent to those for the medial rectus, inferior rectus and superior rectus muscles, this is an extremely rare case of midbrain infarction presenting with isolated unilateral ptosis.


Assuntos
Blefaroptose/etiologia , Infarto Encefálico/complicações , Infarto Encefálico/patologia , Lateralidade Funcional , Mesencéfalo/patologia , Humanos , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
13.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38284934

RESUMO

Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the RNA-binding proteins G3BP1/2. Stress granules have been implicated in several disease states, including cancer and neurodegeneration. Consequently, compounds that limit stress granule formation or promote their dissolution have potential as both experimental tools and novel therapeutics. Herein, we describe two small molecules, G3BP inhibitor a and b (G3Ia and G3Ib), designed to bind to a specific pocket in G3BP1/2 that is targeted by viral inhibitors of G3BP1/2 function. In addition to disrupting the co-condensation of RNA, G3BP1, and caprin 1 in vitro, these compounds inhibit stress granule formation in cells treated prior to or concurrent with stress and dissolve pre-existing stress granules. These effects are consistent across multiple cell types and a variety of initiating stressors. Thus, these compounds represent powerful tools to probe the biology of stress granules and hold promise for therapeutic interventions designed to modulate stress granule formation.


Assuntos
DNA Helicases , RNA Helicases , Grânulos de Estresse , DNA Helicases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética
14.
Elife ; 122024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529532

RESUMO

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.


Assuntos
Disfunção Cognitiva , Endofenótipos , Animais , Camundongos , Humanos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Lactatos/metabolismo , Concentração de Íons de Hidrogênio
15.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425931

RESUMO

Stress granule formation is triggered by the release of mRNAs from polysomes and is promoted by the action of the paralogs G3BP1 and G3BP2. G3BP1/2 proteins bind mRNAs and thereby promote the condensation of mRNPs into stress granules. Stress granules have been implicated in several disease states, including cancer and neurodegeneration. Consequently, compounds that limit stress granule formation or promote their dissolution have potential as both experimental tools and novel therapeutics. Herein, we describe two small molecules, referred to as G3BP inhibitor a and b (G3Ia and G3Ib), designed to bind to a specific pocket in G3BP1/2 that is known to be targeted by viral inhibitors of G3BP1/2 function. In addition to disrupting co-condensation of RNA, G3BP1, and caprin 1 in vitro, these compounds inhibit stress granule formation in cells treated prior to or concurrent with stress, and dissolve pre-existing stress granules when added to cells after stress granule formation. These effects are consistent across multiple cell types and a variety of initiating stressors. Thus, these compounds represent ideal tools to probe the biology of stress granules and hold promise for therapeutic interventions designed to modulate stress granule formation.

16.
J Clin Invest ; 133(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37463454

RESUMO

Mutations in HNRNPH2 cause an X-linked neurodevelopmental disorder with features that include developmental delay, motor function deficits, and seizures. More than 90% of patients with hnRNPH2 have a missense mutation within or adjacent to the nuclear localization signal (NLS) of hnRNPH2. Here, we report that hnRNPH2 NLS mutations caused reduced interaction with the nuclear transport receptor Kapß2 and resulted in modest cytoplasmic accumulation of hnRNPH2. We generated 2 knockin mouse models with human-equivalent mutations in Hnrnph2 as well as Hnrnph2-KO mice. Knockin mice recapitulated clinical features of the human disorder, including reduced survival in male mice, impaired motor and cognitive functions, and increased susceptibility to audiogenic seizures. In contrast, 2 independent lines of Hnrnph2-KO mice showed no detectable phenotypes. Notably, KO mice had upregulated expression of Hnrnph1, a paralog of Hnrnph2, whereas knockin mice failed to upregulate Hnrnph1. Thus, genetic compensation by Hnrnph1 may counteract the loss of hnRNPH2. These findings suggest that HNRNPH2-related disorder may be driven by a toxic gain of function or a complex loss of HNRNPH2 function with impaired compensation by HNRNPH1. The knockin mice described here are an important resource for preclinical studies to assess the therapeutic benefit of gene replacement or knockdown of mutant hnRNPH2.


Assuntos
Transtornos do Neurodesenvolvimento , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Mutação , Mutação de Sentido Incorreto , Convulsões/genética
17.
Front Neurol ; 13: 994676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237616

RESUMO

In amyotrophic lateral sclerosis (ALS), neurodegeneration is characterized by distal axonopathy that begins at the distal axons, including the neuromuscular junctions, and progresses proximally in a "dying back" manner prior to the degeneration of cell bodies. However, the molecular mechanism for distal axonopathy in ALS has not been fully addressed. Semaphorin 3A (Sema3A), a repulsive axon guidance molecule that phosphorylates collapsin response mediator proteins (CRMPs), is known to be highly expressed in Schwann cells near distal axons in a mouse model of ALS. To clarify the involvement of Sema3A-CRMP signaling in the axonal pathogenesis of ALS, we investigated the expression of phosphorylated CRMP1 (pCRMP1) in the spinal cords of 35 patients with sporadic ALS and seven disease controls. In ALS patients, we found that pCRMP1 accumulated in the proximal axons and co-localized with phosphorylated neurofilaments (pNFs), which are a major protein constituent of spheroids. Interestingly, the pCRMP1:pNF ratio of the fluorescence signal in spheroid immunostaining was inversely correlated with disease duration in 18 evaluable ALS patients, indicating that the accumulation of pCRMP1 may precede that of pNFs in spheroids or promote ALS progression. In addition, overexpression of a phospho-mimicking CRMP1 mutant inhibited axonal outgrowth in Neuro2A cells. Taken together, these results indicate that pCRMP1 may be involved in the pathogenesis of axonopathy in ALS, leading to spheroid formation through the proximal progression of axonopathy.

18.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35523582

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disorder that affects upper and lower motor neurons; however, its pathomechanism has not been fully elucidated. Using a comprehensive phosphoproteomic approach, we have identified elevated phosphorylation of Collapsin response mediator protein 1 (Crmp1) at serine 522 in the lumbar spinal cord of ALS model mice overexpressing a human superoxide dismutase mutant (SOD1G93A). We investigated the effects of Crmp1 phosphorylation and depletion in SOD1G93A mice using Crmp1S522A (Ser522→Ala) knock-in (Crmp1ki/ki ) mice in which the S522 phosphorylation site was abolished and Crmp1 knock-out (Crmp1-/-) mice, respectively. Crmp1ki/ki /SOD1G93A mice showed longer latency to fall in a rotarod test while Crmp1-/-/SOD1G93A mice showed shorter latency compared with SOD1G93A mice. Survival was prolonged in Crmp1ki/ki /SOD1G93A mice but not in Crmp1-/-/SOD1G93A mice. In agreement with these phenotypic findings, residual motor neurons and innervated neuromuscular junctions (NMJs) were comparatively well-preserved in Crmp1ki/ki /SOD1G93A mice without affecting microglial and astroglial pathology. Pathway analysis of proteome alterations showed that the sirtuin signaling pathway had opposite effects in Crmp1ki/ki /SOD1G93A and Crmp1-/-/SOD1G93A mice. Our study indicates that modifying CRMP1 phosphorylation is a potential therapeutic strategy for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Fosforilação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
19.
Science ; 372(6549): eabc3593, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34739326

RESUMO

Eukaryotic cells respond to stress through adaptive programs that include reversible shutdown of key cellular processes, the formation of stress granules, and a global increase in ubiquitination. The primary function of this ubiquitination is thought to be for tagging damaged or misfolded proteins for degradation. Here, working in mammalian cultured cells, we found that different stresses elicited distinct ubiquitination patterns. For heat stress, ubiquitination targeted specific proteins associated with cellular activities that are down-regulated during stress, including nucleocytoplasmic transport and translation, as well as stress granule constituents. Ubiquitination was not required for the shutdown of these processes or for stress granule formation but was essential for the resumption of cellular activities and for stress granule disassembly. Thus, stress-induced ubiquitination primes the cell for recovery after heat stress.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Resposta ao Choque Térmico , Proteoma/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Neurônios , Pressão Osmótica , Estresse Oxidativo , Biossíntese de Proteínas , Proteólise , Ribonucleoproteínas/metabolismo , Estresse Fisiológico , Raios Ultravioleta , Proteína com Valosina/antagonistas & inibidores , Proteína com Valosina/metabolismo
20.
Front Immunol ; 12: 625465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659007

RESUMO

Here we report three cases of anti-myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) mimicking multiple sclerosis in which seropositivity for anti-MOG antibodies occurred during disease-modifying drug dimethyl fumarate (DMF) treatment. These patients developed relapses with anti-MOG antibody seroconversion after switching from fingolimod or steroid pulse therapy to DMF, which was associated with peripheral lymphocyte recovery. MOGAD is considered a humoral immune disease, and DMF reportedly enhances Th2-skewed humoral immune activity. Therefore, we suggest that DMF, but not fingolimod, may exacerbate humoral immune imbalance and enhance autoantibody production, leading to aggravation of MOGAD.


Assuntos
Autoanticorpos/sangue , Fumarato de Dimetilo/uso terapêutico , Imunossupressores/uso terapêutico , Glicoproteína Mielina-Oligodendrócito/imunologia , Mielite Transversa/tratamento farmacológico , Neurite Óptica/tratamento farmacológico , Adulto , Idoso , Biomarcadores/sangue , Fumarato de Dimetilo/efeitos adversos , Substituição de Medicamentos , Feminino , Cloridrato de Fingolimode/uso terapêutico , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunossupressores/efeitos adversos , Masculino , Mielite Transversa/diagnóstico , Mielite Transversa/imunologia , Neurite Óptica/diagnóstico , Neurite Óptica/imunologia , Recidiva , Soroconversão , Esteroides/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA