Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Lab Invest ; 103(2): 100013, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37039150

RESUMO

Amyotrophic lateral sclerosis (ALS) causes progressive degeneration of the motor neurons. In this study, we delivered the genetic construct including the whole locus of human mutant superoxide dismutase 1 (SOD1) with the promoter region of human SOD1 into porcine zygotes using intracytoplasmic sperm injection-mediated gene transfer, and we thereby generated a pig model of human mutant SOD1-mediated familial ALS. The established ALS pig model exhibited an initial abnormality of motor neurons with accumulated misfolded SOD1. The ALS pig model, with a body size similar to that of human beings, will provide opportunities for cell and gene therapy platforms in preclinical translational research.


Assuntos
Esclerose Lateral Amiotrófica , Superóxido Dismutase-1 , Animais , Humanos , Masculino , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Modelos Animais de Doenças , Neurônios Motores/patologia , Mutação , Sêmen , Superóxido Dismutase-1/genética , Suínos
2.
Xenotransplantation ; 30(6): e12825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771249

RESUMO

There have been high expectations in recent years of using xenotransplantation and regenerative medicine to treat humans, and pigs have been utilized as the donor model. Pigs used for these clinical applications must be microbiologically safe, that is, free of infectious pathogens, to prevent infections not only in livestock, but also in humans. Currently, however, the full spectrum of pathogens that can infect to the human host or cause disease in transplanted porcine organs/cells has not been fully defined. In the present study, we thus aimed to develop a larger panel for the detection of pathogens that could potentially infect xenotransplantation donor pigs. Our newly developed panel, which consisted of 76 highly sensitive PCR detection assays, was able to detect 41 viruses, 1 protozoa, and a broad range of bacteria (by use of universal 16S rRNA primers). The applicability of this panel was validated using blood samples from uterectomy-born piglets, and pathogens suspected to be vertically transmitted from sows to piglets were successfully detected. We estimate that, at least for viruses and bacteria, the number of target pathogens detected by the developed screening panel should suffice to meet the microbiological safety levels required worldwide for xenotransplantation and/or regenerative therapy. This panel provides greater diagnosis options to produce donor pigs so that it would render unnecessary to screen for all pathogens listed. Instead, the new panel could be utilized to detect only required pathogens within a given geographic range where the donor pigs for xenotransplantation have been and/or are being developed.


Assuntos
Retrovirus Endógenos , Doadores de Tecidos , Suínos , Animais , Humanos , Feminino , Transplante Heterólogo , RNA Ribossômico 16S
3.
Lab Invest ; 102(5): 560-569, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34980882

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, manifesting as the progressive development of fluid-filled renal cysts. In approximately half of all patients with ADPKD, end-stage renal disease results in decreased renal function. In this study, we used CRISPR-Cas9 and somatic cell cloning to produce pigs with the unique mutation c.152_153insG (PKD1insG/+). Pathological analysis of founder cloned animals and progeny revealed that PKD1insG/+ pigs developed many pathological conditions similar to those of patients with heterozygous mutations in PKD1. Pathological similarities included the formation of macroscopic renal cysts at the neonatal stage, number and cystogenic dynamics of the renal cysts formed, interstitial fibrosis of the renal tissue, and presence of a premature asymptomatic stage. Our findings demonstrate that PKD1insG/+ pigs recapitulate the characteristic symptoms of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Animais , Feminino , Heterozigoto , Humanos , Rim/patologia , Masculino , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Suínos , Canais de Cátion TRPP/genética
4.
Proc Natl Acad Sci U S A ; 115(4): 708-713, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311328

RESUMO

Genetically engineered pigs play an indispensable role in the study of rare monogenic diseases. Pigs harboring a gene responsible for a specific disease can be efficiently generated via somatic cell cloning. The generation of somatic cell-cloned pigs from male cells with mutation(s) in an X chromosomal gene is a reliable and straightforward method for reproducing X-linked genetic diseases (XLGDs) in pigs. However, the severe symptoms of XLGDs are often accompanied by impaired growth and reproductive disorders, which hinder the reproduction of these valuable model animals. Here, we generated unique chimeric boars composed of mutant cells harboring a lethal XLGD and normal cells. The chimeric boars exhibited the cured phenotype with fertility while carrying and transmitting the genotype of the XLGD. This unique reproduction system permits routine production of XLGD model pigs through the male-based breeding, thereby opening an avenue for translational research using disease model pigs.


Assuntos
Técnicas de Cultura Embrionária/métodos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Reprodução/genética , Animais , Animais Geneticamente Modificados/genética , Cruzamento , Quimera , Clonagem de Organismos/métodos , Modelos Animais de Doenças , Fertilidade , Técnicas de Inativação de Genes/métodos , Engenharia Genética/métodos , Masculino , Técnicas de Transferência Nuclear , Suínos/genética
5.
Sci Technol Adv Mater ; 22(1): 511-521, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34220339

RESUMO

Calcium-phosphate cements (CPCs) have been used as bone filling materials in orthopaedic surgery. However, CPCs are set using an acid-base reaction, and then change into stable hydroxyapatite (HAp) in a living body. Therefore, we developed bioresorbable chelate-setting ß-tricalcium phosphate (ß-TCP) cements based on surface modifications of inositol phosphate (IP6). In order to improve the bioresorbability, we fabricated IP6/ß-TCP cements hybridized with poly(lactic-co-glycolic acid) (PLGA) particles as a pore-forming agent. The compressive strengths of the cements with the amounts of 5 and 10 mass% PLGA particles were 23.2 and 22.8 MPa, respectively. There was no significant difference from cements without PLGA (23.4 MPa). The setting times of the cement specimens with PLGA particles (30 min) were a little longer than those without PLGA particles (26.3 min). The lack of cytotoxicity of the cement specimens was confirmed using osteoblast-like cells (MC3T3-E1). Cylindrical defects were made by drilling into the tibia of mini-pigs and injecting the prepared cement pastes into the defects. Twelve weeks after implantation the specimens were stained with toluidine blue and histologically evaluated. Histological evaluation of cement specimens with PLGA particles showed enhanced bioresorbability. Newly-formed bone was also observed inside cement specimens with PLGA particles. The IP6/ß-TCP cement specimens with PLGA particles had excellent material properties, such as injectability, compressive strength, high porosity, no cytotoxicity in vitro, bioresorption and bone formation abilities in vivo. Organic-inorganic hybridized CPCs are expected to be valuable as novel biodegradable paste-like artificial bone fillers.

6.
Lab Invest ; 100(6): 887-899, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060408

RESUMO

Genetic cardiomyopathy is a group of intractable cardiovascular disorders involving heterogeneous genetic contribution. This heterogeneity has hindered the development of life-saving therapies for this serious disease. Genetic mutations in dystrophin and its associated glycoproteins cause cardiomuscular dysfunction. Large animal models incorporating these genetic defects are crucial for developing effective medical treatments, such as tissue regeneration and gene therapy. In the present study, we knocked out the δ-sarcoglycan (δ-SG) gene (SGCD) in domestic pig by using a combination of efficient de novo gene editing and somatic cell nuclear transfer. Loss of δ-SG expression in the SGCD knockout pigs caused a concomitant reduction in the levels of α-, ß-, and γ-SG in the cardiac and skeletal sarcolemma, resulting in systolic dysfunction, myocardial tissue degeneration, and sudden death. These animals exhibited symptoms resembling human genetic cardiomyopathy and are thus promising for use in preclinical studies of next-generation therapies.


Assuntos
Cardiomiopatias , Sarcoglicanas , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Feminino , Mutação da Fase de Leitura/genética , Técnicas de Inativação de Genes , Masculino , Miocárdio/química , Miocárdio/metabolismo , Miocárdio/patologia , Sarcoglicanas/deficiência , Sarcoglicanas/genética , Suínos
7.
Lab Invest ; 100(6): 900, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32203148

RESUMO

This article was originally published under Nature Research's License to Publish, but has now been made available under a [CC BY 4.0] license. The PDF and HTML versions of the article have been modified accordingly.

8.
J Reprod Dev ; 65(3): 231-237, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30773506

RESUMO

The partial or complete loss of one X chromosome in humans causes Turner syndrome (TS), which is accompanied by a range of physical and reproductive pathologies. This article reports similarities between the phenotype of a pig with monosomy X and the symptoms of TS in humans. Born as the offspring of a male pig carrying a mutation in an X-chromosomal gene, ornithine transcarbamylase (OTC), the female pig (37,XO) was raised to the age of 36 months. This X-monosomic pig presented with abnormal physical characteristics including short stature, micrognathia, and skeletal abnormalities in the limbs. Furthermore, the female did not exhibit an estrous cycle, even after reaching the age of sexual maturity, and showed no ovarian endocrine activity except for an irregular increase in blood 17ß-estradiol levels, which was seemingly attributable to sporadic follicular development. An autopsy at 36 months revealed an undeveloped reproductive tract with ovaries that lacked follicles. These data demonstrated that the growth processes and anatomical and physiological characteristics of an X-monosomic pig closely resembled those of a human with TS.


Assuntos
Monossomia/genética , Síndrome de Turner/genética , Síndrome de Turner/veterinária , Cromossomo X , Animais , Autopsia , Modelos Animais de Doenças , Feminino , Genes Ligados ao Cromossomo X , Cariotipagem , Masculino , Mutação , Ornitina Carbamoiltransferase/genética , Folículo Ovariano/anormalidades , Fenótipo , Suínos , Tomografia Computadorizada por Raios X , Síndrome de Turner/diagnóstico
9.
Xenotransplantation ; 25(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29067747

RESUMO

BACKGROUND: Despite progress in the current genetic manipulation of donor pigs, most non-human primates were lost within a day of receiving porcine lung transplants. We previously reported that carbon monoxide (CO) treatment improved pulmonary function in an allogeneic lung transplant (LTx) model using miniature swine. In this study, we evaluated whether the perioperative treatment with low-dose inhalation of CO has beneficial effects on porcine lung xenografts in cynomolgus monkeys (cynos). METHODS: Eight cynos received orthotopic left LTx using either α-1,3-galactosyltransferase knockout (GalT-KO; n = 2) or GalT-KO with human decay accelerating factor (hDAF) (GalT-KO/hDAF; n = 6) swine donors. These eight animals were divided into three groups. In Group 1 (n = 2), neither donor nor recipients received CO therapy. In Group 2 (n = 4), donors were treated with inhaled CO for 180-minute. In Group 3 (n = 2), both donors and recipients were treated with CO (donor: 180-minute; recipient: 360-minute). Concentration of inhaled CO was adjusted based on measured levels of carboxyhemoglobin in the blood (15%-20%). RESULTS: Two recipients survived for 3 days; 75 hours (no-CO) and 80 hours (CO in both the donor and the recipient), respectively. Histology showed less inflammatory cell infiltrates, intravascular thrombi, and hemorrhage in the 80-hour survivor with the CO treatment than the 75-hours non-CO treatment. Anti-non-Gal cytotoxicity levels did not affect the early loss of the grafts. Although CO treatment did not prolong overall xeno lung graft survival, the recipient/donor CO treatment helped to maintain platelet counts and inhibit TNF-α and IL-6 secretion at 2 hours after revascularization of grafts. In addition, lung xenografts that were received recipient/donor CO therapy demonstrated fewer macrophage and neutrophil infiltrates. Infiltrating macrophages as well as alveolar epithelial cells in the CO-treated graft expressed heme oxygenase-1. CONCLUSION: Although further investigation is required, CO treatment may provide a beneficial strategy for pulmonary xenografts.


Assuntos
Monóxido de Carbono/farmacologia , Xenoenxertos/efeitos dos fármacos , Transplante de Pulmão , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Galactosemias/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Pulmão/imunologia , Transplante de Pulmão/métodos , Macaca fascicularis , Suínos , Porco Miniatura , Transplante Heterólogo/métodos , Transplantes/efeitos dos fármacos , Transplantes/imunologia
10.
J Surg Res ; 227: 119-129, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29804843

RESUMO

BACKGROUND: The present study aimed to evaluate whether bioengineered mouse islet cell sheets can be used for the treatment of diabetes mellitus. METHODS: Isolated mouse pancreatic islets were dispersed, and cells were plated on temperature-responsive culture plates coated with iMatrix-551. On day 3 of culture, the sheets were detached from the plates and used for further analysis or transplantation. The following parameters were assessed: (1) morphology, (2) expression of ß-cell-specific transcription factors and other islet-related proteins, (3) methylation level of the pancreatic duodenal homeobox-1 (Pdx-1) promoter, as determined by bisulfite sequencing, and (4) levels of serum glucose after transplantation of one or two islet cell sheets into the abdominal cavity of streptozotocin-induced diabetic severe combined immunodeficiency mice. RESULTS: From each mouse, we recovered approximately 233.3 ± 12.5 islets and 1.4 ± 0.1 × 105 cells after dispersion. We estimate that approximately 68.2% of the cells were lost during dispersion. The viability of recovered single cells was 91.3 ± 0.9%. The engineered islet cell sheets were stable, but the messenger RNA levels of various ß-cell-specific transcription factors were significantly lower than those of primary islets, whereas Pdx-1 promoter methylation and the expression of NeuroD, Pdx-1, and glucagon proteins were similar between sheets and islets. Moreover, transplantation of islet cell sheets did not revert serum hyperglycemia in any of the recipient mice. CONCLUSIONS: Engineering effective islet cell sheets require further research efforts, as the currently produced sheets remain functionally inferior compared with primary islets.


Assuntos
Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Cultura Primária de Células/métodos , Engenharia Tecidual/métodos , Cavidade Abdominal/cirurgia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Glicemia , Sobrevivência Celular , Células Cultivadas , Metilação de DNA , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Glucagon/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hiperglicemia/sangue , Hiperglicemia/terapia , Insulina , Camundongos , Camundongos SCID , Proteínas do Tecido Nervoso/metabolismo , Cultura Primária de Células/instrumentação , Regiões Promotoras Genéticas/genética , Estreptozocina/toxicidade , Transativadores/genética , Transativadores/metabolismo , Resultado do Tratamento
11.
J Reprod Dev ; 63(2): 157-165, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28111381

RESUMO

DNA methylation in transcriptional regulatory regions is crucial for gene expression. The DNA methylation status of the edges of CpG islands, called CpG island shore, is involved in tissue/cell-type-specific gene expression. Haploinsufficiency diseases are caused by inheritance of one mutated null allele and are classified as autosomal dominant. However, in the same pedigree, phenotypic variances are observed despite the inheritance of the identical mutated null allele, including Fibrillin1 (FBN1), which is responsible for development of the haploinsufficient Marfan disease. In this study, we examined the relationship between gene expression and DNA methylation patterns of the FBN1 CpG island shore focusing on transcriptionally active hypomethylated alleles (Hypo-alleles). No difference in the DNA methylation level of FBN1 CpG island shore was observed in porcine fetal fibroblast (PFF) and the liver, whereas FBN1 expression was higher in PFF than in the liver. However, Hypo-allele ratio of the FBN1 CpG island shore in PFF was higher than that in the liver, indicating that Hypo-allele ratio of the FBN1 CpG island shore likely correlated with FBN1 expression level. In addition, oocyte-derived DNA hypermethylation in preimplantation embryos was erased until the blastocyst stage, and re-methylation of the FBN1 CpG island shore was observed with prolonged in vitro culture of blastocysts. These results suggest that the establishment of the DNA methylation pattern within the FBN1 CpG island shore occurs after the blastocyst stage, likely during organogenesis. In conclusion, Hypo-allele ratios of the FBN1 CpG island shore correlated with FBN1 expression levels in porcine tissues.


Assuntos
Blastocisto/metabolismo , Ilhas de CpG/fisiologia , Metilação de DNA , Fibrilina-1/genética , Alelos , Animais , Feminino , Fertilização in vitro/veterinária , Fibrilina-1/metabolismo , Fibroblastos/metabolismo , Fígado/metabolismo , Regiões Promotoras Genéticas , Suínos
12.
Mol Reprod Dev ; 83(1): 61-70, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26488621

RESUMO

Myostatin (MSTN) is a negative regulator of myogenesis, and disruption of its function causes increased muscle mass in various species. Here, we report the generation of MSTN-knockout (KO) pigs using genome editing technology combined with somatic-cell nuclear transfer (SCNT). Transcription activator-like effector nuclease (TALEN) with non-repeat-variable di-residue variations, called Platinum TALEN, was highly efficient in modifying genes in porcine somatic cells, which were then used for SCNT to create MSTN KO piglets. These piglets exhibited a double-muscled phenotype, possessing a higher body weight and longissimus muscle mass measuring 170% that of wild-type piglets, with double the number of muscle fibers. These results demonstrate that loss of MSTN increases muscle mass in pigs, which may help increase pork production for consumption in the future.


Assuntos
Clonagem de Organismos/veterinária , Técnicas de Transferência de Genes/veterinária , Miostatina/genética , Suínos/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Composição Corporal/genética , Clonagem de Organismos/métodos , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Desenvolvimento Muscular/genética , Músculos/anatomia & histologia , Músculos/metabolismo , Mutagênese , Técnicas de Transferência Nuclear , Tamanho do Órgão/genética
13.
J Reprod Dev ; 62(2): 219-23, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26875691

RESUMO

A novel hollow fiber vitrification (HFV) method was applied to materials that have previously been difficult to cryopreserve, thereby expanding the potential application of this method. The results showed that zona-free porcine morulae and their isolated blastomeres remained viable even after vitrification. The rate of development to blastocysts after vitrification was similar for zona-free and zona-intact morulae (21/23, 91.3% for both). Vitrified blastomeres had a developmental potential equal to that of non-vitrified blastomeres (blastocyst formation rate after reaggregation: 16/17, 94.1% for both). The HFV method was also effective for the cryopreservation of in vitro matured/fertilized bovine embryos at the 2- to 4-cell, 8- to 16-cell and morula stages. The blastocyst formation rates of vitrified embryos (66.1-82.5%) were similar to those of non-vitrified embryos (74.5-82.5%). These results indicate that this novel HFV method is an effective tool for embryo cryopreservation that can enhance current practices in reproductive biology.


Assuntos
Criopreservação/métodos , Vitrificação , Animais , Blastocisto/citologia , Blastômeros/citologia , Blastômeros/ultraestrutura , Bovinos , Células do Cúmulo/citologia , Transferência Embrionária , Desenvolvimento Embrionário , Feminino , Fertilização in vitro , Mórula/citologia , Oócitos/citologia , Suínos , Temperatura , Fatores de Tempo
14.
J Reprod Dev ; 62(5): 511-520, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27396383

RESUMO

Genetically modified pigs that express fluorescent proteins such as green and red fluorescent proteins have become indispensable biomedical research tools in recent years. Cell or tissue transplantation studies using fluorescent markers should be conducted, wherein the xeno-antigenicity of the fluorescent proteins does not affect engraftment or graft survival. Thus, we aimed to create a transgenic (Tg)-cloned pig that was immunologically tolerant to fluorescent protein antigens. In the present study, we generated a Tg-cloned pig harboring a derivative of Plum modified by a single amino acid substitution in the chromophore. The cells and tissues of this Tg-cloned pig expressing the modified Plum (mPlum) did not fluoresce. However, western blot and immunohistochemistry analyses clearly showed that the mPlum had the same antigenicity as Plum. Thus, we have obtained primary proof of principle for creating a cloned pig that is immunologically tolerant to fluorescent protein antigens.


Assuntos
Animais Geneticamente Modificados , Técnicas de Transferência Nuclear , Transgenes , Animais , Antígenos/metabolismo , Núcleo Celular/metabolismo , Clonagem Molecular , Metilação de DNA , Feminino , Fibroblastos/metabolismo , Citometria de Fluxo , Fluorescência , Vetores Genéticos , Genótipo , Sobrevivência de Enxerto , Imuno-Histoquímica , Substâncias Luminescentes/química , Suínos
15.
Proc Natl Acad Sci U S A ; 110(12): 4557-62, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23431169

RESUMO

In the field of regenerative medicine, one of the ultimate goals is to generate functioning organs from pluripotent cells, such as ES cells or induced pluripotent stem cells (PSCs). We have recently generated functional pancreas and kidney from PSCs in pancreatogenesis- or nephrogenesis-disabled mice, providing proof of principle for organogenesis from PSCs in an embryo unable to form a specific organ. Key when applying the principles of in vivo generation to human organs is compensation for an empty developmental niche in large nonrodent mammals. Here, we show that the blastocyst complementation system can be applied in the pig using somatic cell cloning technology. Transgenic approaches permitted generation of porcine somatic cell cloned embryos with an apancreatic phenotype. Complementation of these embryos with allogenic blastomeres then created functioning pancreata in the vacant niches. These results clearly indicate that a missing organ can be generated from exogenous cells when functionally normal pluripotent cells chimerize a cloned dysorganogenetic embryo. The feasibility of blastocyst complementation using cloned porcine embryos allows experimentation toward the in vivo generation of functional organs from xenogenic PSCs in large animals.


Assuntos
Animais Geneticamente Modificados , Órgãos Bioartificiais , Blastocisto/citologia , Clonagem de Organismos/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Pâncreas , Suínos/embriologia , Animais , Humanos , Camundongos , Suínos/genética
16.
J Reprod Dev ; 61(3): 169-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25739316

RESUMO

Monomeric Plum (Plum), a far-red fluorescent protein with photostability and photopermeability, is potentially suitable for in vivo imaging and detection of fluorescence in body tissues. The aim of this study was to generate transgenic cloned pigs exhibiting systemic expression of Plum using somatic cell nuclear transfer (SCNT) technology. Nuclear donor cells for SCNT were obtained by introducing a Plum-expression vector driven by a combination of the cytomegalovirus early enhancer and chicken beta-actin promoter into porcine fetal fibroblasts (PFFs). The cleavage and blastocyst formation rates of reconstructed SCNT embryos were 81.0% (34/42) and 78.6% (33/42), respectively. At 36-37 days of gestation, three fetuses systemically expressing Plum were obtained from one recipient to which 103 SCNT embryos were transferred (3/103, 2.9%). For generation of offspring expressing Plum, rejuvenated PFFs were established from one cloned fetus and used as nuclear donor cells. Four cloned offspring and one stillborn cloned offspring were produced from one recipient to which 117 SCNT embryos were transferred (5/117, 4.3%). All offspring exhibited high levels of Plum fluorescence in blood cells, such as lymphocytes, monocytes and granulocytes. In addition, the skin, heart, kidney, pancreas, liver and spleen also exhibited Plum expression. These observations demonstrated that transfer of the Plum gene did not interfere with the development of porcine SCNT embryos and resulted in the successful generation of transgenic cloned pigs that systemically expressed Plum. This is the first report of the generation and characterization of transgenic cloned pigs expressing the far-red fluorescent protein Plum.


Assuntos
Animais Geneticamente Modificados , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/química , Técnicas de Transferência Nuclear , Actinas/metabolismo , Animais , Blastocisto/citologia , Núcleo Celular/metabolismo , Galinhas , Clonagem de Organismos , Feminino , Fibroblastos/metabolismo , Vetores Genéticos , Granulócitos/citologia , Linfócitos/citologia , Monócitos/citologia , Regiões Promotoras Genéticas , Suínos , Proteína Vermelha Fluorescente
17.
J Reprod Dev ; 61(5): 449-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26227017

RESUMO

Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs.


Assuntos
Animais Geneticamente Modificados/genética , Galactosiltransferases/genética , Técnicas de Inativação de Genes/veterinária , Oxigenases de Função Mista/genética , Sus scrofa/genética , Alelos , Animais , Animais Geneticamente Modificados/metabolismo , Animais Recém-Nascidos , Linhagem Celular , Clonagem de Organismos/veterinária , Transferência Embrionária/veterinária , Éxons , Feminino , Galactosiltransferases/antagonistas & inibidores , Galactosiltransferases/metabolismo , Homozigoto , Japão , Masculino , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/metabolismo , Técnicas de Transferência Nuclear/veterinária , RNA/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Sus scrofa/metabolismo
18.
J Reprod Dev ; 60(3): 230-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24748398

RESUMO

The development and regeneration of the pancreas is of considerable interest because of the role of these processes in pancreatic diseases, such as diabetes. Here, we sought to develop a large animal model in which the pancreatic cell lineage could be tracked. The pancreatic and duodenal homeobox-1 (Pdx1) gene promoter was conjugated to Venus, a green fluorescent protein, and introduced into 370 in vitro-matured porcine oocytes by intracytoplasmic sperm injection-mediated gene transfer. These oocytes were transferred into four recipient gilts, all of which became pregnant. Three gilts were sacrificed at 47-65 days of gestation, and the fourth was allowed to farrow. Seven of 16 fetuses obtained were transgenic (Tg) and exhibited pancreas-specific green fluorescence. The fourth recipient gilt produced a litter of six piglets, two of which were Tg. The founder Tg offspring matured normally and produced healthy first-generation (G1) progeny. A postweaning autopsy of four 27-day-old G1 Tg piglets confirmed the pancreas-specific Venus expression. Immunostaining of the pancreatic tissue indicated the transgene was expressed in ß-cells. Pancreatic islets from Tg pigs were transplanted under the renal capsules of NOD/SCID mice and expressed fluorescence up to one month after transplantation. Tg G1 pigs developed normally and had blood glucose levels within the normal range. Insulin levels before and after sexual maturity were within normal ranges, as were other blood biochemistry parameters, indicating that pancreatic function was normal. We conclude that Pdx1-Venus Tg pigs represent a large animal model suitable for research on pancreatic development/regeneration and diabetes.


Assuntos
Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/genética , Pâncreas/metabolismo , Suínos/genética , Animais , Rastreamento de Células/métodos , Rastreamento de Células/veterinária , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência de Genes/veterinária , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Transplante das Ilhotas Pancreáticas/métodos , Transplante das Ilhotas Pancreáticas/veterinária , Masculino , Especificidade de Órgãos/genética , Pâncreas/embriologia , Gravidez , Injeções de Esperma Intracitoplásmicas/veterinária , Suínos/embriologia , Transativadores/genética
19.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591397

RESUMO

Hydroxyapatite and ß-tricalcium phosphate have been clinically applied as artificial bone materials due to their high biocompatibility. The development of artificial bones requires the verification of safety and efficacy through animal experiments; however, from the viewpoint of animal welfare, it is necessary to reduce the number of animal experiments. In this study, we utilized machine learning to construct a model that estimates the bone-forming ability of bioceramics from material fabrication conditions, material properties, and in vivo experimental conditions. We succeeded in constructing two models: 'Model 1', which predicts material properties from their fabrication conditions, and 'Model 2', which predicts the bone-formation rate from material properties and in vivo experimental conditions. The inclusion of full width at half maximum (FWHM) in the feature of Model 2 showed an improvement in accuracy. Furthermore, the results of the feature importance showed that the FWHMs were the most important. By an inverse analysis of the two models, we proposed candidates for material fabrication conditions to achieve target values of the bone-formation rate. Under the proposed conditions, the material properties of the fabricated material were consistent with the estimated material properties. Furthermore, a comparison between bone-formation rates after 12 weeks of implantation in the porcine tibia and the estimated bone-formation rate. This result showed that the actual bone-formation rates existed within the error range of the estimated bone-formation rates, indicating that machine learning consistently predicts the results of animal experiments using material fabrication conditions. We believe that these findings will lead to the establishment of alternative animal experiments to replace animal experiments in the development of artificial bones.

20.
Sci Rep ; 14(1): 6401, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493252

RESUMO

Organoid is a tissue-engineered organ-like structure that resemble as an organ. Porcine islet-derived organoid might be used as an alternative donor of porcine islet xenotransplantation, a promising therapy for severe diabetes. In this study, we elucidated the characteristics of porcine islet organoids derived from porcine islets as a cell source for transplantation. Isolated porcine islets were 3D-cultured using growth factor-reduced matrigel in organoid culture medium consist of advanced DMEM/F12 with Wnt-3A, R-spondin, EGF, Noggin, IGF-1, bFGF, nicotinamide, B27, and some small molecules. Morphological and functional characteristics of islet organoids were evaluated in comparison with 2D-cultured islets in advanced DMEM/F12 medium. Relatively short-term (approximately 14 days)-cultured porcine islet organoids were enlarged and proliferated, but had an attenuated insulin-releasing function. Long-term (over a month)-cultured islet organoids could be passaged and cryopreserved. However, they showed pancreatic duct characteristics, including cystic induction, strong expression of Sox9, loss of PDX1 expression, and no insulin-releasing function. These findings were seen in long-term-cultured porcine islets. In conclusion, our porcine islet organoids showed the characteristics of pancreatic ducts. Further study is necessary for producing porcine islet-derived organoids having characteristics as islets.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Suínos , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Ductos Pancreáticos/metabolismo , Organoides/metabolismo , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA