Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 18(2): 156-162, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30531848

RESUMO

Bulk and two-dimensional black phosphorus are considered to be promising battery materials due to their high theoretical capacities of 2,600 mAh g-1. However, their rate and cycling capabilities are limited by the intrinsic (de-)alloying mechanism. Here, we demonstrate a unique surface redox molecular-level mechanism of P sites on oxidized black phosphorus nanosheets that are strongly coupled with graphene via strong interlayer bonding. These redox-active sites of the oxidized black phosphorus are confined at the amorphorized heterointerface, revealing truly reversible pseudocapacitance (99% of total stored charge at 2,000 mV s-1). Moreover, oxidized black-phosphorus-based electrodes exhibit a capacitance of 478 F g-1 (four times greater than black phosphorus) with a rate capability of ~72% (compared to 21.2% for black phosphorus) and retention of ~91% over 50,000 cycles. In situ spectroelectrochemical and theoretical analyses reveal a reversible change in the surface electronic structure and chemical environment of the surface-exposed P redox sites.

2.
Heliyon ; 9(8): e18772, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576328

RESUMO

Zeolite has become a promising material that can potentially play a pivotal role in resolving environmental crises. Among zeolite families, MCM-22 zeolite shows outstanding intrinsic properties associated with the topology and porous structure, offering ion-exchange advantages for catalytic activity processes. The synthesis of MCM-22 zeolite becomes challenging when concerning the cost and catalytic performance. To overcome this bottleneck, we demonstrate a sustainable route of a hydrothermal process using natural resources as starting materials. Rice husk from agricultural waste was used as a silica source while natural clays (kaolin and bentonite) were applied as alumina sources. The products from natural sources were compared with the use of commercial starting materials, e.g., NaAlO2 (for alumina) and Na2SiO3 and TEOS (for silica), in points of crystal, compositional, and morphological views. We showed that the high purity of MCM-22 zeolite can be obtained from rice husk silica (RHS) and aluminosilicate gel (ASG) extracted from kaolin, while the use of ASG extracted from bentonite tended to be unsuitable to generate the zeolite formation. We also studied the effects of reaction time and the ratio of RHS/ASG on the crystallinity and surface area of MCM-22. The architecture and acidity of an optimal product were explored by Nuclear magnetic resonance spectroscopy and Temperature-programmed desorption of ammonia, demonstrating the success of achieving well acidity.

3.
ACS Nano ; 14(7): 7696-7703, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32579331

RESUMO

Temperature is a state variable that significantly affects thermodynamic and kinetic performances and performance degradation of energy storage materials. In this Perspective, we address our recent progress in the energy storage performance and transporting phenomena of supercapacitors when temperatures are elevated to >100 °C. Electrodes include reduced graphene oxide film and foam and conductive metal organic frameworks; electrolytes include phosphoric-acid-doped polybenzimidazole and double networked ionogels. The electrochemical, thermal, and mechanical properties of electrodes and electrolytes are correlated with energy storage performance and degradation at high temperatures. We also address the fundamental understanding of ion transport of polymeric electrolytes and the emergence of nanoscale-confined fast mobile protons at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA