Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 487: 116959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734151

RESUMO

Pethoxamid (PXA) is a chloroacetamide herbicide that works by inhibiting the germination of target weeds in crops. PXA is not a genotoxic agent, however, in a two-year chronic toxicity study, incidence of thyroid follicular cell hyperplasia was observed in male rats treated at a high dose. Many non-mutagenic chemicals, including agrochemicals are known to produce thyroid hyperplasia in rodents through a hepatic metabolizing enzyme induction mode of action (MoA). In this study, the effects of oral gavage PXA treatment at 300 mg/kg for 7 days on the disposition of intravenously (iv) administered radio-labeled thyroxine ([125I]-T4) was assessed in bile-duct cannulated (BDC) rats. Another group of animals were treated with phenobarbital (PB, 100 mg/kg), a known enzyme inducer, serving as a positive control. The results showed significant increase (p < 0.01) in the mean liver weights in the PB and PXA-treated groups relative to the control group. The serum total T4 radioactivity Cmax and AUC0-4 values for PB and PXA-treated groups were lower than for the control group, suggesting increased clearance from serum. The mean percentages of administered radioactivity excreted in bile were 7.96 ± 0.38%, 16.13 ± 5.46%, and 11.99 ± 2.80% for the control, PB and PXA groups, respectively, indicating increased clearance via the bile in the treated animals. These data indicate that PXA can perturb the thyroid hormone homeostasis in rats by increasing T4 elimination in bile, possibly through enzyme induction mechanism similar to PB. In contrast to humans, the lack of high affinity thyroid binding globulin (TBG) in rats perhaps results in enhanced metabolism of T4 by uridine diphosphate glucuronosyl transferase (UGT). Since this liver enzyme induction MoA for thyroid hyperplasia by PB is known to be rodent specific, PXA effects on thyroid can also be considered not relevant to humans. The data from this study also suggest that incorporating a BDC rat model to determine thyroid hormone disposition using [125I]-T4 is valuable in a thyroid mode of action analysis.


Assuntos
Herbicidas , Fígado , Ratos Sprague-Dawley , Tiroxina , Animais , Tiroxina/sangue , Masculino , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Herbicidas/toxicidade , Radioisótopos do Iodo , Tamanho do Órgão/efeitos dos fármacos , Fenobarbital/farmacologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia
2.
Xenobiotica ; 53(4): 279-287, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37347282

RESUMO

1. Dimethoate is an organophosphate insecticide. The objective of this work was to determine the enzymatic kinetics of metabolism of dimethoate and its active metabolite omethoate in rats and humans and obtain key input parameters for physiologically based pharmacokinetic (PBPK) model.2. First, the intrinsic clearance of dimethoate expressed as formation rate of omethoate was determined to be ∼42-fold lower in human liver microsomes (HLM) (0.39 µL/min/mg) than in rat liver microsomes (RLM) (16.6 µL/min/mg) by an LC/MS/MS method. Next, dimethoate clearance in liver microsomes was determined using parent depletion and total [14C]-metabolite formation methods. Results from both approaches showed slower clearance of dimethoate in HLM (1.1-3.3 µL/min/mg) than in RLM (12.7-17.4 µL/min/mg).3. Investigation of in vitro enzymatic kinetics of omethoate demonstrated that the intrinsic clearance rates for omethoate in adult and juvenile RLM and HLM were similar. No significant turnover of dimethoate was apparent in rat cytosol or plasma. In contrast, degradation of omethoate in human plasma was slightly higher than in rat plasma.4. Finally, toxicokinetics of dimethoate were determined in adult and juvenile rats. In both age groups, following oral dosing, absorption of dimethoate was rapid with formation of significant amounts of omethoate.


Assuntos
Dimetoato , Inseticidas , Humanos , Ratos , Animais , Dimetoato/farmacocinética , Espectrometria de Massas em Tandem , Cinética
3.
Xenobiotica ; 53(5): 382-395, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37706283

RESUMO

1. Dimethoate is an organophosphate insecticide that is converted in vivo to omethoate, the active toxic moiety. Omethoate inhibits acetylcholinesterase (AChE) in the brain and red blood cells (RBCs). This paper describes the development of rat and human physiologically-based pharmacokinetic/pharmacodynamic (PBPK/PD) models for dimethoate.2. The model simulates the absorption and distribution of dimethoate and omethoate, the conversion of dimethoate to omethoate and to other metabolites, the metabolism and excretion of omethoate, and the inhibition of RBC and brain AChE. An extensive data collection program to estimate metabolism and inhibition parameters is described.3. The suite of models includes an adult rat, post-natal rat, and human model. The rat models were evaluated by comparing model predictions of dimethoate and omethoate to measured blood time course data, and with RBC and brain AChE inhibition estimates from an extensive database of in vivo AChE measurements.4. After the demonstration of adequately fitted rat models that were robust to sensitivity analysis, the human model was applied for estimation of points-of-departure (PODs) for risk assessment using the human-specific parameters in the human PBPK/PD model. Thus, the standard interspecies uncertainty factor can be reduced from 10X to 1X.


Assuntos
Inseticidas , Adulto , Ratos , Humanos , Animais , Inseticidas/farmacologia , Dimetoato/farmacologia , Acetilcolinesterase/metabolismo
4.
Regul Toxicol Pharmacol ; 110: 104552, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31836537

RESUMO

Following adoption of the new OECD test guideline (TG) 474 for the in vivo mammalian erythrocyte micronucleus (MN) test (29 July 2016), demonstration of exposure of target tissue (bone marrow) is required, if the test result is negative i.e. no cytogenetic damage. It implies that for many active ingredients, relevant metabolites or significant impurities with existing in vivo MN tests resulting in negative genotoxicity findings, evidence of target tissue exposure may be lacking and is considered a data gap in regulatory reviews. We present here toxicokinetic (TK) testing strategies for the design and conduct of studies that would demonstrate evidence of delivery of the test substance to the bone marrow. To illustrate this, three examples are presented with methods utilized under each scenario. We also propose a decision tree that may help design suitable TK studies to establish evidence of bone marrow exposure.


Assuntos
Agroquímicos/farmacocinética , Agroquímicos/toxicidade , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Árvores de Decisões , Testes para Micronúcleos , Animais , Feminino , Masculino , Ratos Sprague-Dawley , Toxicocinética
5.
Toxicol Appl Pharmacol ; 338: 65-72, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146463

RESUMO

Bifenthrin, a pyrethroid insecticide, undergoes oxidative metabolism leading to the formation of 4'-hydroxy-bifenthrin (4'-OH-BIF) and hydrolysis leading to the formation of TFP acid in rat and human hepatic microsomes. In this study, age-dependent metabolism of bifenthrin in rats and humans were determined via the rates of formation of 4'-OH-BIF and TFP acid following incubation of bifenthrin in juvenile and adult rat (PND 15 and PND 90) and human (<5years and >18years) liver microsomes. Furthermore, in vitro hepatic intrinsic clearance (CLint) of bifenthrin was determined by substrate consumption method in a separate experiment. The mean Vmax(±SD) for the formation of 4'-OH-BIF in juvenile rat hepatic microsomes was 25.0±1.5pmol/min/mg which was significantly lower (p<0.01) compared to that of adult rats (86.0±17.7pmol/min/mg). However, the mean Km values for juvenile (19.9±6.6µM) and adult (23.9±0.4µM) rat liver microsomes were similar. On the other hand, in juvenile human hepatic microsomes, Vmax for the formation of 4'-OH-BIF (73.9±7.5pmol/min/mg) was significantly higher (p<0.05) than that of adults (21.6±0.6pmol/min/mg) albeit similar Km values (10.5±2.8µM and 8.9±0.6µM) between the two age groups. The trends in the formation kinetics of TFP acid were similar to those of 4'-OH-BIF between the species and age groups, although the differences between juveniles and adults were less pronounced. The data also show that metabolism of bifenthrin occurs primarily via oxidative pathway with relatively lesser contribution (~30%) from hydrolytic pathway in both rat and human liver microsomes. The CLint values for bifenthrin, determined by monitoring the consumption of substrate, in juvenile and adult rat liver microsomes fortified with NADPH were 42.0±7.2 and 166.7±20.5µl/min/mg, respectively, and the corresponding values for human liver microsomes were 76.0±4.0 and 21.3±1.2µl/min/mg, respectively. The data suggest a major species difference in the age dependent metabolism of bifenthrin. In human liver microsomes, bifenthrin is metabolized at a much higher rate in juveniles than in adults, while the opposite appears to be true in rat liver microsomes.


Assuntos
Microssomos Hepáticos/metabolismo , Piretrinas/metabolismo , Fatores Etários , Animais , Feminino , Humanos , Hidrólise , Masculino , Redes e Vias Metabólicas , Ratos , Especificidade da Espécie
6.
Regul Toxicol Pharmacol ; 84: 26-34, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27993653

RESUMO

The in vitro comparative animal metabolism study is now a data requirement under EU Directive 1107/2009 for registration of plant protection products. This type of study helps determine the extent of metabolism of a chemical in each surrogate species and whether any unique human metabolite(s) are formed. In the present study, metabolism of racemic [14C]-benalaxyl, a fungicide was investigated in cryopreserved rat, dog and human hepatocytes. The metabolites generated were identified/characterized by LC/MS/MS with radiometric detection and comparison with reference standards. [14C]-glucuronide conjugates of benalaxyl metabolites in rat, dog and human hepatocytes were confirmed via additional experiments in which known reference standards were incubated with dog liver microsomes in the presence of UDPGA. After 4 h of incubation, benalaxyl was extensively metabolized in all the species with the following trend: dog (100%) > human (86%) > rat (75%). In all species, the major metabolic pathways consisted of hydroxylation of the methyl group in the xylene moiety to 2-hydroxymethyl-benalaxyl, further oxidation to its carboxylic acid analogue (benalaxyl-2-benzoic acid), and hydrolysis of the methyl ester to yield benalaxyl acid or 2-hydroxymethyl benalaxyl acid. In addition, glucuronidation of phase I metabolites occurred in all species, to a higher extent in dog hepatocytes in which 2-hydroxymethyl-benalaxyl-glucuronide conjugate constituted the most significant metabolite. No major unique metabolite was observed in human hepatocytes. Also, benalaxyl did not undergo stereo-selective metabolism in rat or human hepatocytes.


Assuntos
Alanina/análogos & derivados , Fungicidas Industriais/metabolismo , Hepatócitos/metabolismo , Alanina/química , Alanina/metabolismo , Alanina/toxicidade , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Criopreservação , Cães , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Glucuronídeos/metabolismo , Humanos , Hidroxilação , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredução , Ratos , Medição de Risco , Especificidade da Espécie , Espectrometria de Massas em Tandem , Testes de Toxicidade
7.
Bull Environ Contam Toxicol ; 96(5): 580-4, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27003806

RESUMO

Evaluation of the environmental risk of human pharmaceuticals is now a mandatory component in all new drug applications submitted for approval in EU. With >3000 drugs currently in use, it is not feasible to test each active ingredient, so prioritization is key. A recent review has listed nine prioritization approaches including the fish plasma model (FPM). The present paper focuses on comparison of measured and predicted fish plasma bioconcentration factors (BCFs) of four common over-the-counter/prescribed pharmaceuticals: norethindrone (NET), ibuprofen (IBU), verapamil (VER) and clozapine (CLZ). The measured data were obtained from the earlier published fish BCF studies. The measured BCF estimates of NET, IBU, VER and CLZ were 13.4, 1.4, 0.7 and 31.2, while the corresponding predicted BCFs (based log Kow at pH 7) were 19, 1.0, 7.6 and 30, respectively. These results indicate that the predicted BCFs matched well the measured values. The BCF estimates were used to calculate the human: fish plasma concentration ratios of each drug to predict potential risk to fish. The plasma ratio results show the following order of risk potential for fish: NET > CLZ > VER > IBU. The FPM has value in prioritizing pharmaceutical products for ecotoxicological assessments.


Assuntos
Monitoramento Ambiental/métodos , Peixes/sangue , Poluentes Químicos da Água/sangue , Animais , Clozapina/sangue , Ibuprofeno/sangue , Modelos Teóricos , Noretindrona/sangue , Medição de Risco , Verapamil/sangue
8.
Arch Environ Contam Toxicol ; 62(2): 306-13, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21710293

RESUMO

The environmental presence of the oral contraceptive norethindrone (NET) has been reported and shown to have reproductive effects in fish at environmentally realistic exposure levels. The current study examined bioconcentration potential of NET in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Fathead minnows were exposed to 50 µg/l NET for 28 days and allowed to depurate in clean water for 14 days. In a minimized 14-day test design, catfish were exposed to 100 µg/l NET for 7 days followed by 7-day depuration. In the fathead test, tissues (muscle, liver, and kidneys) were sampled during the uptake (days 1, 3, 7, 14, and 28) and depuration (days 35 and 42) phases. In the catfish test, muscle, liver, gill, brain, and plasma were collected during the uptake (days 1, 3, and 7) and depuration (day 14) stages. NET tissue levels were determined by gas chromatography-mass spectrometry (GC-MS). Accumulation of NET in tissues was greatest in liver followed by plasma, gill, brain, and muscle. Tissue-specific bioconcentration factors (BCFs) ranged from 2.6 to 40.8. Although NET has been reported to elicit reproductive effects in fish, the present study indicated a low potential to bioconcentrate in aquatic biota.


Assuntos
Anticoncepcionais Orais/farmacocinética , Cyprinidae/metabolismo , Água Doce/química , Ictaluridae/metabolismo , Noretindrona/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , Anticoncepcionais Orais/análise , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Rim/efeitos dos fármacos , Modelos Lineares , Fígado/efeitos dos fármacos , Masculino , Músculos/efeitos dos fármacos , Dinâmica não Linear , Noretindrona/análise , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/análise , Qualidade da Água/normas
9.
Environ Toxicol Chem ; 35(3): 593-603, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26753615

RESUMO

The present study examined the bioconcentration of 2 basic pharmaceuticals: verapamil (a calcium channel blocker) and clozapine (an antipsychotic compound) in 2 fresh water fishes, fathead minnow and channel catfish. In 4 separate bioconcentration factor (BCF) experiments (2 chemicals × 1 exposure concentration × 2 fishes), fathead minnow and channel catfish were exposed to 190 µg/L and 419 µg/L of verapamil (500 µg/L nominal) or 28.5 µg/L and 40 µg/L of clozapine (50 µg/L nominal), respectively. Bioconcentration factor experiments with fathead consisted of 28 d uptake and 14 d depuration, whereas tests conducted on catfish involved a minimized test design, with 7 d each of uptake and depuration. Fish (n = 4-5) were sampled during exposure and depuration to collect different tissues: muscle, liver, gills, kidneys, heart (verapamil tests only), brain (clozapine tests only), and blood plasma (catfish tests only). Verapamil and clozapine concentrations in various tissues of fathead and catfish were analyzed using liquid chromatography-mass spectrometry. In general, higher accumulation rates of the test compounds were observed in tissues with higher perfusion rates. Accumulation was also high in tissues relevant to pharmacological targets in mammals (i.e. heart in verapamil test and brain in the clozapine test). Tissue-specific BCFs (wet wt basis) for verapamil and clozapine ranged from 0.7 to 75 and from 31 to 1226, respectively. Tissue-specific concentration data were used to examine tissue-blood partition coefficients.


Assuntos
Clozapina/análise , Cyprinidae/metabolismo , Ictaluridae/metabolismo , Verapamil/análise , Poluentes Químicos da Água/análise , Animais , Cromatografia Líquida de Alta Pressão , Clozapina/isolamento & purificação , Feminino , Brânquias/química , Brânquias/metabolismo , Rim/química , Rim/metabolismo , Extração Líquido-Líquido , Fígado/química , Fígado/metabolismo , Masculino , Espectrometria de Massas , Músculos/química , Músculos/metabolismo , Miocárdio/química , Miocárdio/metabolismo , Verapamil/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação
10.
Chemosphere ; 84(10): 1371-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21658739

RESUMO

Pharmaceutical products and their metabolites are being widely detected in aquatic environments and there is a growing interest in assessing potential risks of these substances to fish and other non-target species. Ibuprofen is one of the most commonly used analgesic drugs and no peer-reviewed laboratory studies have evaluated the tissue specific bioconcentration of ibuprofen in fish. In the current study, fathead minnow (Pimephales promelas) were exposed to 250 µg L(-1) ibuprofen for 28 d followed by a 14 d depuration phase. In a minimized bioconcentration test design, channel catfish (Ictalurus punctatus) were exposed to 250 µg L(-1) for a week and allowed to depurate for 7 d. Tissues were collected during uptake and depuration phases of each test and the corresponding proportional and kinetic bioconcentration factors (BCFs) were estimated. The results indicated that the BCF levels were very low (0.08-1.4) implying the lack of bioconcentration potential for ibuprofen in the two species. The highest accumulation of ibuprofen was observed in the catfish plasma as opposed to individual tissues. The minimized test design yielded similar bioconcentration results as those of the standard test and has potential for its use in screening approaches for pharmaceuticals and other classes of chemicals.


Assuntos
Peixes-Gato/metabolismo , Cyprinidae/metabolismo , Monitoramento Ambiental/métodos , Ibuprofeno/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Monitoramento Ambiental/normas , Água Doce/química , Ibuprofeno/normas , Masculino , Poluentes Químicos da Água/normas
11.
Comp Biochem Physiol C Toxicol Pharmacol ; 152(2): 232-40, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20417311

RESUMO

We examined the acute effects of triclosan (TCS) exposure, a common antimicrobial found as a contaminant in the field, on survival and physiology of amphibian larvae. LC50 values were determined after 96h for North American larval species: Acris crepitans blanchardii, Bufo woodhousii woodhousii, Rana sphenocephala, and for a developmental model: Xenopus laevis. Amphibian larvae were most sensitive to TCS exposure during early development based upon 96-h LC50 values. Heart rates for X. laevis and North American larvae exposed to TCS were variable throughout development. Metabolic rates of X. laevis and R. sphenocephala larvae exposed to TCS were significantly affected in larvae exposed to [50% LC50] and [LC50]. Tissue uptake and tissue bioconcentration factor (BCF) of TCS were investigated in X. laevis, B. woodhousii woodhousii, and R. sphenocephala. In general, a significant increase was observed as exposure concentration increased. Tissue BCF values were dependent upon stage and species. While TCS concentrations used here are higher than environmental concentrations, exposure to TCS was dependent upon species and developmental stage, with early developmental stages being most sensitive to TCS exposure.


Assuntos
Anti-Infecciosos Locais/toxicidade , Anuros/metabolismo , Triclosan/toxicidade , Animais , Anti-Infecciosos Locais/metabolismo , Anuros/crescimento & desenvolvimento , Frequência Cardíaca/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/metabolismo , Testes de Toxicidade Aguda , Triclosan/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA