Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369980

RESUMO

Facial expressions are one of the important non-verbal ways used to understand human emotions during communication. Thus, acquiring and reproducing facial expressions is helpful in analyzing human emotional states. However, owing to complex and subtle facial muscle movements, facial expression modeling from images with face poses is difficult to achieve. To handle this issue, we present a method for acquiring facial expressions from a non-frontal single photograph using a 3D-aided approach. In addition, we propose a contour-fitting method that improves the modeling accuracy by automatically rearranging 3D contour landmarks corresponding to fixed 2D image landmarks. The acquired facial expression input can be parametrically manipulated to create various facial expressions through a blendshape or expression transfer based on the FACS (Facial Action Coding System). To achieve a realistic facial expression synthesis, we propose an exemplar-texture wrinkle synthesis method that extracts and synthesizes appropriate expression wrinkles according to the target expression. To do so, we constructed a wrinkle table of various facial expressions from 400 people. As one of the applications, we proved that the expression-pose synthesis method is suitable for expression-invariant face recognition through a quantitative evaluation, and showed the effectiveness based on a qualitative evaluation. We expect our system to be a benefit to various fields such as face recognition, HCI, and data augmentation for deep learning.


Assuntos
Face , Expressão Facial , Simulação por Computador , Emoções , Músculos Faciais , Humanos , Imageamento Tridimensional , Movimento
2.
Sensors (Basel) ; 17(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665361

RESUMO

The necessity for the classification of open and closed eyes is increasing in various fields, including analysis of eye fatigue in 3D TVs, analysis of the psychological states of test subjects, and eye status tracking-based driver drowsiness detection. Previous studies have used various methods to distinguish between open and closed eyes, such as classifiers based on the features obtained from image binarization, edge operators, or texture analysis. However, when it comes to eye images with different lighting conditions and resolutions, it can be difficult to find an optimal threshold for image binarization or optimal filters for edge and texture extraction. In order to address this issue, we propose a method to classify open and closed eye images with different conditions, acquired by a visible light camera, using a deep residual convolutional neural network. After conducting performance analysis on both self-collected and open databases, we have determined that the classification accuracy of the proposed method is superior to that of existing methods.

3.
Sensors (Basel) ; 14(4): 6516-34, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24721768

RESUMO

In scalp skin examinations, it is difficult to find a previously treated region on a patient's scalp through images captured by a camera attached to a diagnostic device because the zoom lens on camera has a small field of view. Thus, doctors manually record the region on a chart or manually mark the region. However, this process is slow and inconveniences the patient. Thus, we propose a new system for tracking the diagnostic device for the scalp skin of patients. Our research is novel in four ways. First, our proposed system consists of two cameras to capture the face and the diagnostic device. Second, the user can easily set the position of camera to capture the diagnostic device by manually moving a frame to which the camera is attached. Third, the position of patient's nostrils and corners of the eyes are detected to align the position of his/her head more accurately with the recorded position from previous sessions. Fourth, the position of the diagnostic device is continuously tracked during the examination through images that help detect the position of the color marker attached to the device. Experimental results show that our system has a higher performance than conventional method.


Assuntos
Técnicas e Procedimentos Diagnósticos/instrumentação , Couro Cabeludo/anatomia & histologia , Pele/anatomia & histologia , Adulto , Humanos , Imageamento Tridimensional , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA