Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688011

RESUMO

Smart manufacturing is pivotal in the context of Industry 4.0, as it integrates advanced technologies like the Internet of Things (IoT) and automation to streamline production processes and improve product quality, paving the way for a competitive industrial landscape. Machines have become network-based through the IoT, where integrated and collaborated manufacturing system responds in real time to meet demand fluctuations for personalized customization. Within the network-based manufacturing system (NBMS), mobile industrial robots (MiRs) are vital in increasing operational efficiency, adaptability, and productivity. However, with the advent of IoT-enabled manufacturing systems, security has become a serious challenge because of the communication of various devices acting as mobile nodes. This paper proposes the framework for a newly personalized customization factory, considering all the advanced technologies and tools used throughout the production process. To encounter the security concern, an IoT-enabled NBMS is selected as the system model to tackle a black hole attack (BHA) using the NTRUEncrypt cryptography and the ad hoc on-demand distance-vector (AODV) routing protocol. NTRUEncrypt performs encryption and decryption while sending and receiving messages. The proposed technique is simulated by network simulator NS-2.35, and its performance is evaluated for different network environments, such as a healthy network, a malicious network, and an NTRUEncrypt-secured network based on different evaluation metrics, including throughput, goodput, end-to-end delay, and packet delivery ratio. The results show that the proposed scheme performs safely in the presence of a malicious node. The implications of this study are beneficial for manufacturing industries looking to embrace IoT-enabled subtractive and additive manufacturing facilitated by mobile industrial robots. Implementation of the proposed scheme ensures operational efficiency, enables personalized customization, and protects confidential data and communication in the manufacturing ecosystem.

2.
Sensors (Basel) ; 23(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37571632

RESUMO

Having a large number of device connections provides attackers with multiple ways to attack a network. This situation can lead to distributed denial-of-service (DDoS) attacks, which can cause fiscal harm and corrupt data. Thus, irregularity detection in traffic data is crucial in detecting malicious behavior in a network, which is essential for network security and the integrity of modern Cyber-Physical Systems (CPS). Nevertheless, studies have shown that current techniques are ineffective at detecting DDoS attacks on networks, especially in the case of high-speed networks (HSN), as detecting attacks on the latter is very complex due to their fast packet processing. This review aims to study and compare different approaches to detecting DDoS attacks, using machine learning (ML) techniques such as k-means, K-Nearest Neighbors (KNN), and Naive Bayes (NB) used in intrusion detection systems (IDSs) and flow-based IDSs, and expresses data paths for packet filtering for HSN performance. This review highlights the high-speed network accuracy evaluation factors, provides a detailed DDoS attack taxonomy, and classifies detection techniques. Moreover, the existing literature is inspected through a qualitative analysis, with respect to the factors extracted from the presented taxonomy of irregular traffic pattern detection. Different research directions are suggested to support researchers in identifying and designing the optimal solution by highlighting the issues and challenges of DDoS attacks on high-speed networks.

3.
Sensors (Basel) ; 22(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591195

RESUMO

With the increase in urbanization and smart cities initiatives, the management of waste generation has become a fundamental task. Recent studies have started applying machine learning techniques to prognosticate solid waste generation to assist authorities in the efficient planning of waste management processes, including collection, sorting, disposal, and recycling. However, identifying the best machine learning model to predict solid waste generation is a challenging endeavor, especially in view of the limited datasets and lack of important predictive features. In this research, we developed an ensemble learning technique that combines the advantages of (1) a hyperparameter optimization and (2) a meta regressor model to accurately predict the weekly waste generation of households within urban cities. The hyperparameter optimization of the models is achieved using the Optuna algorithm, while the outputs of the optimized single machine learning models are used to train the meta linear regressor. The ensemble model consists of an optimized mixture of machine learning models with different learning strategies. The proposed ensemble method achieved an R2 score of 0.8 and a mean percentage error of 0.26, outperforming the existing state-of-the-art approaches, including SARIMA, NARX, LightGBM, KNN, SVR, ETS, RF, XGBoosting, and ANN, in predicting future waste generation. Not only did our model outperform the optimized single machine learning models, but it also surpassed the average ensemble results of the machine learning models. Our findings suggest that using the proposed ensemble learning technique, even in the case of a feature-limited dataset, can significantly boost the model performance in predicting future household waste generation compared to individual learners. Moreover, the practical implications for the research community and respective city authorities are discussed.


Assuntos
Resíduos Sólidos , Gerenciamento de Resíduos , Algoritmos , Aprendizado de Máquina , Reciclagem , Resíduos Sólidos/análise
4.
Sensors (Basel) ; 22(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35890820

RESUMO

The use of software and IoT services is increasing significantly among people with special needs, who constitute 15% of the world's population. However, selecting appropriate services to create a composite assistive service based on the evolving needs and context of disabled user groups remains a challenging research endeavor. Our research applies a scenario-based design technique to contribute (1) an inclusive disability ontology for assistive service selection, (2) semi-synthetic generated disability service datasets, and (3) a machine learning (ML) framework to choose services adaptively to suit the dynamic requirements of people with special needs. The ML-based selection framework is applied in two complementary phases. In the first phase, all available atomic tasks are assessed to determine their appropriateness to the user goal and profiles, whereas in the subsequent phase, the list of service providers is narrowed by matching their quality-of-service factors against the context and characteristics of the disabled person. Our methodology is centered around a myriad of user characteristics, including their disability profile, preferences, environment, and available IT resources. To this end, we extended the widely used QWS V2.0 and WS-DREAM web services datasets with a fusion of selected accessibility features. To ascertain the validity of our approach, we compared its performance against common multi-criteria decision making (MCDM) models, namely AHP, SAW, PROMETHEE, and TOPSIS. The findings demonstrate superior service selection accuracy in contrast to the other methods while ensuring accessibility requirements are satisfied.


Assuntos
Pessoas com Deficiência , Humanos , Aprendizado de Máquina
5.
Sensors (Basel) ; 23(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616745

RESUMO

Augmented reality (AR) has gained enormous popularity and acceptance in the past few years. AR is indeed a combination of different immersive experiences and solutions that serve as integrated components to assemble and accelerate the augmented reality phenomena as a workable and marvelous adaptive solution for many realms. These solutions of AR include tracking as a means for keeping track of the point of reference to make virtual objects visible in a real scene. Similarly, display technologies combine the virtual and real world with the user's eye. Authoring tools provide platforms to develop AR applications by providing access to low-level libraries. The libraries can thereafter interact with the hardware of tracking sensors, cameras, and other technologies. In addition to this, advances in distributed computing and collaborative augmented reality also need stable solutions. The various participants can collaborate in an AR setting. The authors of this research have explored many solutions in this regard and present a comprehensive review to aid in doing research and improving different business transformations. However, during the course of this study, we identified that there is a lack of security solutions in various areas of collaborative AR (CAR), specifically in the area of distributed trust management in CAR. This research study also proposed a trusted CAR architecture with a use-case of tourism that can be used as a model for researchers with an interest in making secure AR-based remote communication sessions.


Assuntos
Realidade Aumentada , Humanos , Tecnologia , Comércio , Comunicação , Pesquisadores
6.
Sensors (Basel) ; 21(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070719

RESUMO

Recently, the concept of combining 'things' on the Internet to provide various services has gained tremendous momentum. Such a concept has also impacted the automotive industry, giving rise to the Internet of Vehicles (IoV). IoV enables Internet connectivity and communication between smart vehicles and other devices on the network. Shifting the computing towards the edge of the network reduces communication delays and provides various services instantly. However, both distributed (i.e., edge computing) and central computing (i.e., cloud computing) architectures suffer from several inherent issues, such as high latency, high infrastructure cost, and performance degradation. We propose a novel concept of computation, which we call moisture computing (MC) to be deployed slightly away from the edge of the network but below the cloud infrastructure. The MC-based IoV architecture can be used to assist smart vehicles in collaborating to solve traffic monitoring, road safety, and management issues. Moreover, the MC can be used to dispatch emergency and roadside assistance in case of incidents and accidents. In contrast to the cloud which covers a broader area, the MC provides smart vehicles with critical information with fewer delays. We argue that the MC can help reduce infrastructure costs efficiently since it requires a medium-scale data center with moderate resources to cover a wider area compared to small-scale data centers in edge computing and large-scale data centers in cloud computing. We performed mathematical analyses to demonstrate that the MC reduces network delays and enhances the response time in contrast to the edge and cloud infrastructure. Moreover, we present a simulation-based implementation to evaluate the computational performance of the MC. Our simulation results show that the total processing time (computation delay and communication delay) is optimized, and delays are minimized in the MC as apposed to the traditional approaches.

7.
Comput Intell Neurosci ; 2023: 5934548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936667

RESUMO

Integrating smart heterogeneous objects, IoT devices, data sources, and software services to produce new business processes and functionalities continues to attract considerable attention from the research community due to its unraveled advantages, including reusability, adaptation, distribution, and pervasiveness. However, the exploitation of service-oriented computing technologies (e.g., SOC, SOA, and microservice architectures) by people with special needs is underexplored and often overlooked. Furthermore, the existing challenges in this area are yet to be identified clearly. This research study presents a rigorous literature survey of the recent advances in service-oriented composition approaches and solutions for disabled people, their domains of application, and the major challenges, covering studies published between January 2010 and October 2022. To this end, we applied the systematic literature review (SLR) methodology to retrieve and collate only the articles presenting and discussing service composition solutions tailored to produce digitally accessible services for consumption by people who suffer from an impairment or loss of some physical or mental functions. We searched six renowned bibliographic databases, particularly IEEE Xplore, Web of Science, Springer Link, ACM Library, ScienceDirect, and Google Scholar, to synthesize a final pool of 38 related articles. Our survey contributes a comprehensive taxonomy of service composition solutions, techniques, and practices that are utilized to create assistive technologies and services. The seven-facet taxonomy helps researchers and practitioners to quickly understand and analyze the fundamental conceptualizations and characteristics of accessible service composition for people with disabilities. Key findings showed that services are fused to assist disabled persons to carry out their daily activities, mainly in smart homes and ambient intelligent environments. Despite the emergence of immersive technologies (e.g., wearable computing), user-service interactions are enabled primarily through tactile and speech modalities. Service descriptions mainly incorporate functional features (e.g., performance, latency, and cost) of service quality, largely ignoring accessibility features. Moreover, the outstanding research problems revolve around (1) the unavailability of assistive services datasets, (2) the underspecification of accessibility aspects of disabilities, (3) the weak adoption of accessible and universal design practices, (4) the abstraction of service composition approaches, and (5) the rare experimental testing of composition approaches with disabled users. We conclude our survey with a set of guidelines to realize effective assistive service composition in IoT and cloud environments. Researchers and practitioners are advised to create assistive services that support the social relationships of disabled users and model their accessibility needs as part of the quality of service (QoS). Moreover, they should exploit AI/ML models to address the evolving requirements of disabled users in their unique environments. Furthermore, weaknesses of service composition solutions and research challenges are exposed as notable opportunities for future research.


Assuntos
Pessoas com Deficiência , Tecnologia Assistiva , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA