Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 40(3): 300-3, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25680032

RESUMO

Single-photon avalanche diodes (SPADs) have been fabricated on Si using PureB (Pure Boron) chemical-vapor deposition (CVD) to create both a nanometer-thin anode junction and a robust front-entrance window. The device shows high sensitivity to low radiation levels of electrons with energies down to 200 eV when measurements are performed at room temperature where the dark count rate can be as low as 10 Hz. An implicit guard ring, using an n-enhancement implantation in the central region of the diode, is applied, and this gives a very uniform sensitivity across the whole front-entrance window.

2.
Nano Lett ; 11(7): 2875-80, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21627099

RESUMO

For advanced electronic, optoelectronic, or mechanical nanoscale devices a detailed understanding of their structural properties and in particular the strain state within their active region is of utmost importance. We demonstrate that X-ray nanodiffraction represents an excellent tool to investigate the internal structure of such devices in a nondestructive way by using a focused synchotron X-ray beam with a diameter of 400 nm. We show results on the strain fields in and around a single SiGe island, which serves as stressor for the Si-channel in a fully functioning Si-metal-oxide semiconductor field-effect transistor.


Assuntos
Germânio/química , Nanotecnologia , Pontos Quânticos , Silício/química , Transistores Eletrônicos , Tamanho da Partícula , Semicondutores , Propriedades de Superfície , Raios X
3.
J Nanosci Nanotechnol ; 21(4): 2472-2482, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500065

RESUMO

An overview is given of the many applications that nm-thin pure boron (PureB) layers can have when deposited on semiconductors such as Si, Ge, and GaN. The application that has been researched in most detail is the fabrication of nm-shallow p+n-like Si diode junctions that are both electrically and chemically very robust. They are presently used commercially in photodiode detectors for extremeultraviolet (EUV) lithography and scanning-electron-microscopy (SEM) systems. By using chemicalvapor deposition (CVD) or molecular beam epitaxy (MBE) to deposit the B, PureB diodes have been fabricated at temperatures from an optimal 700 °C to as low as 50 °C, making them both front- and back-end-of-line CMOS compatible. On Ge, near-ideal p+n-like diodes were fabricated by covering a wetting layer of Ga with a PureB capping layer (PureGaB). For GaN high electron mobility transistors (HEMTs), an Al-on-PureB gate stack was developed that promises to be a robust alternative to the conventional Ni-Au gates. In MEMS processing, PureB is a resilient nm-thin masking layer for Si micromachining with tetramethyl ammonium hydroxide (TMAH) or potassium hydroxide (KOH), and low-stress PureB membranes have also been demonstrated.

4.
Materials (Basel) ; 4(12): 2092-2107, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28824126

RESUMO

An arsenic doping technique for depositing up to 40-µm-thick high-resistivity layers is presented for fabricating diodes with low RC constants that can be integrated in closely-packed configurations. The doping of the as-grown epi-layers is controlled down to 5 × 1011 cm-3, a value that is solely limited by the cleanness of the epitaxial reactor chamber. To ensure such a low doping concentration, first an As-doped Si seed layer is grown with a concentration of 1016 to 1017 cm-3, after which the dopant gas arsine is turned off and a thick lightly-doped epi-layer is deposited. The final doping in the thick epi-layer relies on the segregation and incorporation of As from the seed layer, and it also depends on the final thickness of the layer, and the exact growth cycles. The obtained epi-layers exhibit a low density of stacking faults, an over-the-wafer doping uniformity of 3.6%, and a lifetime of generated carriers of more than 2.5 ms. Furthermore, the implementation of a segmented photodiode electron detector is demonstrated, featuring a 30 pF capacitance and a 90 Ω series resistance for a 7.6 mm² anode area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA