Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(769): eadj9331, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39413160

RESUMO

Regulatory T cells (Tregs) make major contributions to immune homeostasis. Because Treg dysfunction can lead to both allo- and autoimmunity, there is interest in correcting these disorders through Treg adoptive transfer. Two of the central challenges in clinically deploying Treg cellular therapies are ensuring phenotypic stability and maximizing potency. Here, we describe an approach to address both issues through the creation of OX40 ligand (OX40L)-specific chimeric antigen receptor (CAR)-Tregs under the control of a synthetic forkhead box P3 (FOXP3) promoter. The creation of these CAR-Tregs enabled selective Treg stimulation by engagement of OX40L, a key activation antigen in alloimmunity, including both graft-versus-host disease and solid organ transplant rejection, and autoimmunity, including rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus. We demonstrated that OX40L-CAR-Tregs were robustly activated in the presence of OX40L-expressing cells, leading to up-regulation of Treg suppressive proteins without induction of proinflammatory cytokine production. Compared with control Tregs, OX40L-CAR-Tregs more potently suppressed alloreactive T cell proliferation in vitro and were directly inhibitory toward activated monocyte-derived dendritic cells (DCs). We identified trogocytosis as one of the central mechanisms by which these CAR-Tregs effectively decrease extracellular display of OX40L, resulting in decreased DC stimulatory capacity. OX40L-CAR-Tregs demonstrated an enhanced ability to control xenogeneic graft-versus-host disease compared with control Tregs without abolishing the graft-versus-leukemia effect. These results suggest that OX40L-CAR-Tregs may have wide applicability as a potent cellular therapy to control both allo- and autoimmune diseases.


Assuntos
Células Apresentadoras de Antígenos , Ligante OX40 , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , Ligante OX40/metabolismo , Células Apresentadoras de Antígenos/imunologia , Animais , Receptores de Antígenos Quiméricos/metabolismo , Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Ativação Linfocitária/imunologia , Camundongos
2.
mBio ; 14(4): e0075323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37432034

RESUMO

Changes to gut environmental factors such as pH and osmolality due to disease or drugs correlate with major shifts in microbiome composition; however, we currently cannot predict which species can tolerate such changes or how the community will be affected. Here, we assessed the growth of 92 representative human gut bacterial strains spanning 28 families across multiple pH values and osmolalities in vitro. The ability to grow in extreme pH or osmolality conditions correlated with the availability of known stress response genes in many cases, but not all, indicating that novel pathways may participate in protecting against acid or osmotic stresses. Machine learning analysis uncovered genes or subsystems that are predictive of differential tolerance in either acid or osmotic stress. For osmotic stress, we corroborated the increased abundance of these genes in vivo during osmotic perturbation. The growth of specific taxa in limiting conditions in isolation in vitro correlated with survival in complex communities in vitro and in an in vivo mouse model of diet-induced intestinal acidification. Our data show that in vitro stress tolerance results are generalizable and that physical parameters may supersede interspecies interactions in determining the relative abundance of community members. This study provides insight into the ability of the microbiota to respond to common perturbations that may be encountered in the gut and provides a list of genes that correlate with increased ability to survive in these conditions. IMPORTANCE To achieve greater predictability in microbiota studies, it is crucial to consider physical environmental factors such as pH and particle concentration, as they play a pivotal role in influencing bacterial function and survival. For example, pH is significantly altered in various diseases, including cancers, inflammatory bowel disease, as well in the case of over-the-counter drug use. Additionally, conditions like malabsorption can affect particle concentration. In our study, we investigate how changes in environmental pH and osmolality can serve as predictive indicators of bacterial growth and abundance. Our research provides a comprehensive resource for anticipating shifts in microbial composition and gene abundance during complex perturbations. Moreover, our findings underscore the significance of the physical environment as a major driver of bacterial composition. Finally, this work emphasizes the necessity of incorporating physical measurements into animal and clinical studies to better understand the factors influencing shifts in microbiota abundance.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Bactérias , Concentração Osmolar , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA