Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Clin Microbiol ; 60(3): e0207021, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107302

RESUMO

At-home testing with rapid diagnostic tests (RDTs) for respiratory viruses could facilitate early diagnosis, guide patient care, and prevent transmission. Such RDTs are best used near the onset of illness when viral load is highest and clinical action will be most impactful, which may be achieved by at-home testing. We evaluated the diagnostic accuracy of the QuickVue Influenza A+B RDT in an at-home setting. A convenience sample of 5,229 individuals who were engaged with an on-line health research platform were prospectively recruited throughout the United States. "Flu@home" test kits containing a QuickVue RDT and reference sample collection and shipping materials were prepositioned with participants at the beginning of the study. Participants responded to daily symptom surveys. If they reported experiencing cough along with aches, fever, chills, and/or sweats, they used their flu@home kit following instructions on a mobile app and indicated what lines they saw on the RDT. Of the 976 participants who met criteria to use their self-collection kit and completed study procedures, 202 (20.7%) were positive for influenza by qPCR. The RDT had a sensitivity of 28% (95% CI = 21 to 36) and specificity of 99% (98 to 99) for influenza A, and 32% (95% CI = 20 to 46) and 99% (95% CI = 98 to 99), for influenza B. Our results support the concept of app-supported, prepositioned at-home RDT kits using symptom-based triggers, although it cannot be recommended with the RDT used in this study. Further research is needed to determine ways to improve the accuracy and utility of home-based testing for influenza.


Assuntos
Influenza Humana , Aplicativos Móveis , Testes Diagnósticos de Rotina , Febre , Humanos , Influenza Humana/diagnóstico , Serviços Postais , Sensibilidade e Especificidade
2.
IEEE J Solid-State Circuits ; 52(11): 2857-2870, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30853715

RESUMO

Design and successful implementation of a fully-integrated CMOS fluorescence biochip for DNA/RNA testing in molecular diagnostics (MDx) is presented. The biochip includes a 32×32 array of continuous wave fluorescence detection biosensing elements. Each biosensing element is capable of having unique DNA probe sequences, wavelength-selective multi-dielectric emission filter (OD of 3.6), resistive heater for thermal cycling, and a high performance and programmable photodetector. The dimension of each biosensor is 100µm×100µm with a 50µm×50µm Nwell-Psub photodiode acting as the optical transducer, and a ΣΔ modulator based photocurrent sensor. The measured photodetector performance shows ~116 dB detection dynamic range (10fA - 10nA) over the 25°C - 100°C temperature range, while being ~1 dB away from the fundamental shot-noise limit. To empirically demonstrate the compatibility of this biochip with MDx applications, we have successfully utilized the array and its thermal cycling capability to adopt a 7-plex panel for detection of 6 human upper respiratory viruses.

3.
Biotechnol Bioeng ; 110(3): 838-47, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23055412

RESUMO

We have developed an automated cell counting method that uses images obtained at multiple focal heights to enumerate cells in confluent culture. By taking the derivative of image intensity with respect to focal height using two complementary images, we are able to count high-density monolayers of cells over a large image area. Our method resists errors arising from variability in the focal plane caused by flatness or tilt non-uniformities with a minimal amount of focal plane alignment, allowing the automated collection of images across a large area.


Assuntos
Automação/métodos , Contagem de Células/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Linhagem Celular , Humanos
4.
Contemp Clin Trials Commun ; 33: 101113, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36938318

RESUMO

Background: Studies for developing diagnostics and treatments for infectious diseases usually require observing the onset of infection during the study period. However, when the infection base rate incidence is low, the cohort size required to measure an effect becomes large, and recruitment becomes costly and prolonged. We developed a model for reducing recruiting time and resources in a COVID-19 detection study by targeting recruitment to high-risk individuals. Methods: We conducted an observational longitudinal cohort study at individual sites throughout the U.S., enrolling adults who were members of an online health and research platform. Through direct and longitudinal connection with research participants, we applied machine learning techniques to compute individual risk scores from individually permissioned data about socioeconomic and behavioral data, in combination with predicted local prevalence data. The modeled risk scores were then used to target candidates for enrollment in a hypothetical COVID-19 detection study. The main outcome measure was the incidence rate of COVID-19 according to the risk model compared with incidence rates in actual vaccine trials. Results: When we used risk scores from 66,040 participants to recruit a balanced cohort of participants for a COVID-19 detection study, we obtained a 4- to 7-fold greater COVID-19 infection incidence rate compared with similar real-world study cohorts. Conclusion: This risk model offers the possibility of reducing costs, increasing the power of analyses, and shortening study periods by targeting for recruitment participants at higher risk.

5.
J Vet Diagn Invest ; 21(6): 760-70, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19901276

RESUMO

Bluetongue virus (BTV) causes disease in domestic and wild ruminants and results in significant economic loss. The closely related Epizootic hemorrhagic disease virus (EHDV) has been associated with bluetongue-like disease in cattle. Although U.S. EHDV strains have not been experimentally proven to cause disease in cattle, there is serologic evidence of infection in cattle. Therefore, rapid diagnosis and differentiation of BTV and EHDV is required. The genetic sequence information and bioinformatic analysis necessary to design a real-time reverse transcription polymerase chain reaction (RT-PCR) assay for the early detection of indigenous and exotic BTV and EHDV is described. This sequence data foundation focused on 2 conserved target genes: one that is highly expressed in infected mammalian cells, and the other is highly expressed in infected insect cells. The analysis of all BTV and EHDV prototype strains indicated that a complex primer design was necessary for both a virus group-comprehensive and virus group-specific gene amplification diagnostic test. This information has been used as the basis for the development of a rapid multiplex BTV-EHDV real-time RT-PCR that detects all known serotypes of both viruses and distinguishes between BTV and EHDV serogroups. The sensitivity of this rapid, single-tube, real-time RT-PCR assay is sufficient for diagnostic application, without the contamination problems associated with standard gel-based RT-PCR, especially nested RT-PCR tests.


Assuntos
Vírus Bluetongue/genética , Vírus da Doença Hemorrágica Epizoótica/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Sequência de Bases , Bluetongue/epidemiologia , Vírus Bluetongue/classificação , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , Clonagem Molecular , Primers do DNA , Amplificação de Genes , Vírus da Doença Hemorrágica Epizoótica/classificação , Filogenia , Infecções por Reoviridae/epidemiologia , Sorotipagem , Especificidade da Espécie
6.
J Clin Microbiol ; 46(3): 1081-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18216216

RESUMO

A high-throughput multiplexed assay was developed for the differential laboratory detection of foot-and-mouth disease virus (FMDV) from viruses that cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses by using multiplexed reverse transcription-PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the 17 primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR assay was evaluated using 287 field samples, including 247 samples (213 true-positive samples and 35 true-negative samples) from suspected cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true-negative samples collected from healthy animals. The mRT-PCR assay results were compared to those of two singleplex rRT-PCR assays, using virus isolation with antigen enzyme-linked immunosorbent assays as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% (95% confidence interval [CI], 89.8 to 96.4%), and the sensitivity was 98.1% (95% CI, 95.3 to 99.3%) for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses, such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n = 2) and bovine viral diarrhea virus (n = 2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized by using focused single-target rRT-PCR assays.


Assuntos
Doenças dos Bovinos/diagnóstico , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Doenças dos Suínos/diagnóstico , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Doenças dos Bovinos/virologia , Vírus da Diarreia Viral Bovina/isolamento & purificação , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Microesferas , Parapoxvirus/isolamento & purificação , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , RNA Viral/análise , RNA Viral/isolamento & purificação , Doenças dos Suínos/virologia , Doença Vesicular Suína/diagnóstico , Doença Vesicular Suína/virologia
7.
J Virol Methods ; 153(1): 61-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18634827

RESUMO

A nucleic acid-based multiplexed assay was developed that combines detection of foot-and-mouth disease virus (FMDV) with rule-out assays for two other foreign animal diseases and four domestic animal diseases that cause vesicular or ulcerative lesions indistinguishable from FMDV infection in cattle, sheep and swine. The FMDV "look-alike" diagnostic assay panel contains 5 PCR and 12 reverse transcriptase PCR (RT-PCR) signatures for a total of 17 simultaneous PCR amplifications for 7 diseases plus incorporating 4 internal assay controls. It was developed and optimized to amplify both DNA and RNA viruses simultaneously in a single tube and employs Luminex liquid array technology. Assay development including selection of appropriate controls, a comparison of signature performance in single and multiplex testing against target nucleic acids, as well of limits of detection for each of the individual signatures is presented. While this assay is a prototype and by no means a comprehensive test for FMDV "look-alike" viruses, an assay of this type is envisioned to have benefit to a laboratory network in routine surveillance and possibly for post-outbreak proof of freedom from foot-and-mouth disease.


Assuntos
Doenças dos Bovinos/virologia , Febre Aftosa/diagnóstico , Reação em Cadeia da Polimerase/métodos , Doenças dos Ovinos/virologia , Doenças dos Suínos/virologia , Animais , Bovinos , Primers do DNA , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/isolamento & purificação , Reação em Cadeia da Polimerase/normas , Padrões de Referência , Sensibilidade e Especificidade , Ovinos , Suínos
8.
Biol Methods Protoc ; 3(1): bpy005, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32161799

RESUMO

PCR-based techniques are widely used to identify disease causing bacterial and viral pathogens, especially in point-of-care or near-patient clinical settings that require rapid results and sample-to-answer workflows. However, such techniques often fail to differentiate between closely related species that have highly variable genomes. Here, a homogenous (closed-tube) pathogen identification and classification method is described that combines PCR amplification, array-based amplicon sequence verification, and real-time detection using an inverse fluorescence fluorescence-resonance energy transfer technique. The amplification is designed to satisfy the inclusivity criteria and create ssDNA amplicons, bearing a nonradiating quencher moiety at the 5'-terminus, for all the related species. The array includes fluorescent-labeled probes which preferentially capture the variants of the amplicons and classify them through solid-phase thermal denaturing (melt curve) analysis. Systematic primer and probe design algorithms and empirical validation methods are presented and successfully applied to the challenging example of identification of, and differentiation between, closely related human rhinovirus and human enterovirus strains.

9.
Nat Biotechnol ; 36(8): 738-745, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30010676

RESUMO

The emergence of pathogens resistant to existing antimicrobial drugs is a growing worldwide health crisis that threatens a return to the pre-antibiotic era. To decrease the overuse of antibiotics, molecular diagnostics systems are needed that can rapidly identify pathogens in a clinical sample and determine the presence of mutations that confer drug resistance at the point of care. We developed a fully integrated, miniaturized semiconductor biochip and closed-tube detection chemistry that performs multiplex nucleic acid amplification and sequence analysis. The approach had a high dynamic range of quantification of microbial load and was able to perform comprehensive mutation analysis on up to 1,000 sequences or strands simultaneously in <2 h. We detected and quantified multiple DNA and RNA respiratory viruses in clinical samples with complete concordance to a commercially available test. We also identified 54 drug-resistance-associated mutations that were present in six genes of Mycobacterium tuberculosis, all of which were confirmed by next-generation sequencing.


Assuntos
Vírus de DNA/efeitos dos fármacos , Genótipo , Mycobacterium tuberculosis/efeitos dos fármacos , Vírus de RNA/efeitos dos fármacos , Semicondutores , Contagem de Colônia Microbiana , Sondas de DNA , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , DNA Viral/análise , Farmacorresistência Bacteriana/genética , Farmacorresistência Viral/genética , Estudos de Viabilidade , Genoma Bacteriano , Humanos , Miniaturização , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , RNA Viral/análise
10.
PLoS One ; 10(11): e0142216, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26562786

RESUMO

BACKGROUND: The recently developed Xpert® Ebola Assay is a novel nucleic acid amplification test for simplified detection of Ebola virus (EBOV) in whole blood and buccal swab samples. The assay targets sequences in two EBOV genes, lowering the risk for new variants to escape detection in the test. The objective of this report is to present analytical characteristics of the Xpert® Ebola Assay on whole blood samples. METHODS AND FINDINGS: This study evaluated the assay's analytical sensitivity, analytical specificity, inclusivity and exclusivity performance in whole blood specimens. EBOV RNA, inactivated EBOV, and infectious EBOV were used as targets. The dynamic range of the assay, the inactivation of virus, and specimen stability were also evaluated. The lower limit of detection (LoD) for the assay using inactivated virus was estimated to be 73 copies/mL (95% CI: 51-97 copies/mL). The LoD for infectious virus was estimated to be 1 plaque-forming unit/mL, and for RNA to be 232 copies/mL (95% CI 163-302 copies/mL). The assay correctly identified five different Ebola viruses, Yambuku-Mayinga, Makona-C07, Yambuku-Ecran, Gabon-Ilembe, and Kikwit-956210, and correctly excluded all non-EBOV isolates tested. The conditions used by Xpert® Ebola for inactivation of infectious virus reduced EBOV titer by ≥6 logs. CONCLUSION: In summary, we found the Xpert® Ebola Assay to have high analytical sensitivity and specificity for the detection of EBOV in whole blood. It offers ease of use, fast turnaround time, and remote monitoring. The test has an efficient viral inactivation protocol, fulfills inclusivity and exclusivity criteria, and has specimen stability characteristics consistent with the need for decentralized testing. The simplicity of the assay should enable testing in a wide variety of laboratory settings, including remote laboratories that are not capable of performing highly complex nucleic acid amplification tests, and during outbreaks where time to detection is critical.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/diagnóstico , Programas de Rastreamento/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Chlorocebus aethiops , Ebolavirus/fisiologia , Genes Virais/genética , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos , RNA Viral/sangue , RNA Viral/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo , Células Vero , Inativação de Vírus
11.
Bioinform Biol Insights ; 8: 1-16, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24453480

RESUMO

A computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs. non-functional) of 37 amino acid substitutions on the NS5 polymerase (RdRp) of dengue virus type 2 (DENV-2), 36 of which are not observed in any publicly available DENV-2 sequence. 32 novel mutants with single amino acid substitutions in the RdRp were generated using a DENV-2 reverse genetics system. In 81% (26 of 32) of predictions tested, GeneSV correctly predicted viability of introduced mutations. In 4 of 5 (80%) mutants with double amino acid substitutions proximal in structure to one another GeneSV was also correct in its predictions. Predictive capabilities of the developed system were illustrated on dengue RNA virus, but described in the manuscript a general approach to characterize real or theoretically possible variations in genomic and protein sequences can be applied to any organism.

12.
PLoS Negl Trop Dis ; 8(10): e3216, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340818

RESUMO

BACKGROUND AND PURPOSE: The ability to track changes in gene expression following viral infection is paramount to understanding viral pathogenesis. This study was undertaken to evaluate the nCounter, a high throughput digital gene expression system, as a means to better understand West Nile virus (WNV) dissemination and the inflammatory response against WNV in the outbred Swiss Webster (SW) mouse model over the course of infection. METHODOLOGY: The nCounter Mouse Inflammation gene expression kit containing 179 inflammation related genes was used to analyze gene expression changes in multiple tissues over a nine day course of infection in SW mice following intraperitoneal injection with WNV. Protein expression levels for a subset of these cytokine/chemokine genes were determined using a multiplex protein detection system (BioPlex) and comparisons of protein/RNA expression levels made. RESULTS: Expression analysis of spleen, lung, liver, kidney and brain of SW mice infected with WNV revealed that Cxcl10 and Il12b are differentially expressed in all tissues tested except kidney. Data stratification of positively confirmed infected (WNV (+)) versus non-infected (WNV (-) tissues allowed differentiation of the systemic inflammatory gene response from tissue-specific responses arising from WNV infection. Significant (p<0.05) decrease in C3ar1 was found in WNV (-) spleen. Il23a was significantly upregulated, while Il10rb was down-regulated in WNV (-) lung. Il3 and Mbl2 were down-regulated in WNV (-) liver. In WNV (+) livers, Stat1, Tlr2, chemokines Cxcl1, Cxcl3, Cxcl9, Cxcl10, cytokines Il6, Il18, cytokine-related gene Il1r and cytokine agonist Ilrn were significantly upregulated. In WNV (-) brain tissues, Csf2 and Cxcl10 were significantly upregulated. Similar gene and protein expression kinetics were found for Ccl2, Ccl3, Ccl4 and Ccl5 and correlated with the presence of infectious virus. In summary, the utility of the nCounter platform for rapid identification of gene expression changes in SW mice associated with WNV infection was demonstrated.


Assuntos
Inflamação/imunologia , RNA Mensageiro/análise , Febre do Nilo Ocidental/imunologia , Animais , Quimiocinas/genética , Citocinas/genética , Modelos Animais de Doenças , Feminino , Camundongos , Especificidade de Órgãos , RNA Viral/análise , Transcriptoma , Febre do Nilo Ocidental/virologia
13.
PLoS One ; 7(4): e34560, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22485178

RESUMO

PriMux is a new software package for selecting multiplex compatible, degenerate primers and probes to detect diverse targets such as viruses. It requires no multiple sequence alignment, instead applying k-mer algorithms, hence it scales well for large target sets and saves user effort from curating sequences into alignable groups. PriMux has the capability to predict degenerate primers as well as probes suitable for TaqMan or other primer/probe triplet assay formats, or simply probes for microarray or other single-oligo assay formats. PriMux employs suffix array methods for efficient calculations on oligos 10-~100 nt in length. TaqMan® primers and probes for each segment of Rift Valley fever virus were designed using PriMux, and lab testing comparing signatures designed using PriMux versus those designed using traditional methods demonstrated equivalent or better sensitivity for the PriMux-designed signatures compared to traditional signatures. In addition, we used PriMux to design TaqMan® primers and probes for unalignable or poorly alignable groups of targets: that is, all segments of Rift Valley fever virus analyzed as a single target set of 198 sequences, or all 2863 Dengue virus genomes for all four serotypes available at the time of our analysis. The PriMux software is available as open source from http://sourceforge.net/projects/PriMux.


Assuntos
Primers do DNA/genética , Sondas de DNA/genética , Alinhamento de Sequência , Software , Sequência de Bases , Vírus da Dengue/genética , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex , Vírus da Febre do Vale do Rift/genética
20.
J Gen Virol ; 90(Pt 7): 1713-1723, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19264596

RESUMO

Molecular methods, based on sequencing the region encoding the VP1 major capsid protein, have recently become the gold standard for enterovirus typing. In the most commonly used scheme, sequences more than 75% identical (>85% amino acid identity) in complete or partial VP1 sequence are considered to represent the same type. However, as sequence data have accumulated, it has become clear that the '75%/85% rule' may not be universally applicable. To address this issue, we have determined nucleotide sequences for the complete P1 capsid region of a collection of 53 isolates from the species Human enterovirus C (HEV-C), comparing them with each other and with those of 20 reference strains. Pairwise identities, similarity plots and phylogenetic reconstructions identified three potential new enterovirus types, EV96, EV99 and EV102. When pairwise sequence comparisons were considered in aggregate, there was overlap in percentage identity between comparisons of homotypic strains and heterotypic strains. In particular, the differences between coxsackievirus (CV) A13 and CVA17, CVA24 and EV99, and CVA20 and EV102 were difficult to discern, largely because of intratypic sequence diversity. Closer inspection revealed the minimum intratypic values and maximum intratypic values varied by type, suggesting that the rules were at least consistent within a type. By plotting VP1 amino acid identity vs nucleotide identity for each sequence pair and considering each type separately, members of each type were fully resolved from those of other types. This study suggests that a more stringent value of 88% VP1 amino acid identity is more appropriate for routine typing and that other criteria may need to be applied, on a case by case basis, where lower values are seen.


Assuntos
Proteínas do Capsídeo/genética , Enterovirus Humano C/classificação , Enterovirus Humano C/genética , RNA Viral/genética , Análise por Conglomerados , Enterovirus Humano C/isolamento & purificação , Genótipo , Humanos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA