Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(51): E8228-E8237, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930322

RESUMO

Casitas B-cell lymphoma (Cbl) family ubiquitin ligases negatively regulate tyrosine kinase-dependent signal transduction by promoting degradation of active kinases. We and others previously reported that loss of Cbl functions caused hyperproliferation in lymphoid and hematopoietic systems. Unexpectedly, Cbl deletion in Cbl-b-null, Cbl-c-null primary mouse mammary epithelial cells (MECs) (Cbl triple-deficiency) induced rapid cell death despite enhanced MAP kinase and AKT activation. Acute Cbl triple-deficiency elicited distinct transcriptional and biochemical responses with partial overlap with previously described cellular reactions to unfolded proteins and oxidative stress. Although the levels of reactive oxygen species were comparable, detergent-insoluble protein aggregates containing phosphorylated c-Src accumulated in Cbl triple-deficient MECs. Treatment with a broad-spectrum kinase inhibitor dasatinib blocked protein aggregate accumulation and restored in vitro organoid formation. This effect is most likely mediated through c-Src because Cbl triple-deficient MECs were able to form organoids upon shRNA-mediated c-Src knockdown. Taking these data together, the present study demonstrates that Cbl family proteins are required to protect MECs from proteotoxic stress-induced cell death by promoting turnover of active c-Src.


Assuntos
Células Epiteliais/metabolismo , Linfoma de Células B/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Proliferação de Células , Dasatinibe/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Microscopia de Fluorescência , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Ubiquitinação
2.
PLoS Genet ; 11(11): e1005652, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26588211

RESUMO

The Piwi pathway is deeply conserved amongst animals because one of its essential functions is to repress transposons. However, many Piwi-interacting RNAs (piRNAs) do not base-pair to transposons and remain mysterious in their targeting function. The sheer number of piRNA cluster (piC) loci in animal genomes and infrequent piRNA sequence conservation also present challenges in determining which piC loci are most important for development. To address this question, we determined the piRNA expression patterns of piC loci across a wide phylogenetic spectrum of animals, and reveal that most genic and intergenic piC loci evolve rapidly in their capacity to generate piRNAs, regardless of known transposon silencing function. Surprisingly, we also uncovered a distinct set of piC loci with piRNA expression conserved deeply in Eutherian mammals. We name these loci Eutherian-Conserved piRNA cluster (ECpiC) loci. Supporting the hypothesis that conservation of piRNA expression across ~100 million years of Eutherian evolution implies function, we determined that one ECpiC locus generates abundant piRNAs antisense to the STOX1 transcript, a gene clinically associated with preeclampsia. Furthermore, we confirmed reduced piRNAs in existing mouse mutations at ECpiC-Asb1 and -Cbl, which also display spermatogenic defects. The Asb1 mutant testes with strongly reduced Asb1 piRNAs also exhibit up-regulated gene expression profiles. These data indicate ECpiC loci may be specially adapted to support Eutherian reproduction.


Assuntos
Mamíferos/genética , Família Multigênica , RNA Interferente Pequeno/genética , Animais , Evolução Molecular , Mamíferos/classificação
3.
Biochim Biophys Acta ; 1833(1): 122-39, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23085373

RESUMO

Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Ubiquitinação/fisiologia , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Modelos Biológicos , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo
4.
BMC Dev Biol ; 14: 47, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25527186

RESUMO

BACKGROUND: Identification and characterization of molecular controls that regulate mammary stem and progenitor cell homeostasis are critical to our understanding of normal mammary gland development and its pathology. RESULTS: We demonstrate that conditional knockout of Sox9 in the mouse mammary gland results in impaired postnatal development. In short-term lineage tracing in the postnatal mouse mammary gland using Sox9-CreER driven reporters, Sox9 marked primarily the luminal progenitors and bipotent stem/progenitor cells within the basal mammary epithelial compartment. In contrast, long-term lineage tracing studies demonstrate that Sox9+ precursors gave rise to both luminal and myoepithelial cell lineages. Finally, fate mapping of Sox9 deleted cells demonstrates that Sox9 is essential for luminal, but not myoepithelial, lineage commitment and proliferation. CONCLUSIONS: These studies identify Sox9 as a key regulator of mammary gland development and stem/progenitor maintenance.


Assuntos
Glândulas Mamárias Animais/metabolismo , Fatores de Transcrição SOX9/fisiologia , Células-Tronco/fisiologia , Animais , Linhagem da Célula , Proliferação de Células , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos Transgênicos , Especificidade de Órgãos
5.
EMBO J ; 29(7): 1285-98, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20150895

RESUMO

Expression of the T-cell receptor (TCR):CD3 complex is tightly regulated during T-cell development. The mechanism and physiological role of this regulation are unclear. Here, we show that the TCR:CD3 complex is constitutively ubiquitylated in immature double positive (DP) thymocytes, but not mature single positive (SP) thymocytes or splenic T cells. This steady state, tonic CD3 monoubiquitylation is mediated by the CD3varepsilon proline-rich sequence, Lck, c-Cbl, and SLAP, which collectively trigger the dynamin-dependent downmodulation, lysosomal sequestration and degradation of surface TCR:CD3 complexes. Blocking this tonic ubiquitylation by mutating all the lysines in the CD3 cytoplasmic tails significantly upregulates TCR levels on DP thymocytes. Mimicking monoubiquitylation by expression of a CD3zeta-monoubiquitin (monoUb) fusion molecule significantly reduces TCR levels on immature thymocytes. Moreover, modulating CD3 ubiquitylation alters immunological synapse (IS) formation and Erk phosphorylation, thereby shifting the signalling threshold for positive and negative selection, and regulatory T-cell development. Thus, tonic TCR:CD3 ubiquitylation results in precise regulation of TCR expression on immature T cells, which is required to maintain the fidelity of T-cell development.


Assuntos
Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Dinaminas/metabolismo , Regulação da Expressão Gênica , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Lisina/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Linfócitos T/citologia
6.
J Biol Chem ; 287(35): 29442-56, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22736770

RESUMO

Ada3 protein is an essential component of histone acetyl transferase containing coactivator complexes conserved from yeast to human. We show here that germline deletion of Ada3 in mouse is embryonic lethal, and adenovirus-Cre mediated conditional deletion of Ada3 in Ada3(FL/FL) mouse embryonic fibroblasts leads to a severe proliferation defect which was rescued by ectopic expression of human Ada3. A delay in G(1) to S phase of cell cycle was also seen that was due to accumulation of Cdk inhibitor p27 which was an indirect effect of c-myc gene transcription control by Ada3. We further showed that this defect could be partially reverted by knocking down p27. Additionally, drastic changes in global histone acetylation and changes in global gene expression were observed in microarray analyses upon loss of Ada3. Lastly, formation of abnormal nuclei, mitotic defects and delay in G(2)/M to G(1) transition was seen in Ada3 deleted cells. Taken together, we provide evidence for a critical role of Ada3 in embryogenesis and cell cycle progression as an essential component of HAT complex.


Assuntos
Ciclo Celular/fisiologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição/metabolismo , Acetilação , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética
7.
Proc Natl Acad Sci U S A ; 107(37): 16274-9, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20805496

RESUMO

Casitas B-cell lymphoma (Cbl)-family E3 ubiquitin ligases are negative regulators of tyrosine kinase signaling. Recent work has revealed a critical role of Cbl in the maintenance of hematopoietic stem cell (HSC) homeostasis, and mutations in CBL have been identified in myeloid malignancies. Here we show that, in contrast to Cbl or Cbl-b single-deficient mice, concurrent loss of Cbl and Cbl-b in the HSC compartment leads to an early-onset lethal myeloproliferative disease in mice. Cbl, Cbl-b double-deficient bone marrow cells are hypersensitive to cytokines, and show altered biochemical response to thrombopoietin. Thus, Cbl and Cbl-b play redundant but essential roles in HSC regulation, whose breakdown leads to hematological abnormalities that phenocopy crucial aspects of mutant Cbl-driven human myeloid malignancies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Transtornos Mieloproliferativos/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Envelhecimento , Animais , Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Proteínas Proto-Oncogênicas c-cbl/deficiência , Trombopoetina/metabolismo , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 107(37): 16107-12, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20805499

RESUMO

Active Src localization at focal adhesions (FAs) is essential for cell migration. How this pool is linked mechanistically to the large pool of Src at late endosomes (LEs)/lysosomes (LY) is not well understood. Here, we used inducible Tsg101 gene deletion, TSG101 knockdown, and dominant-negative VPS4 expression to demonstrate that the localization of activated cellular Src and viral Src at FAs requires the endosomal-sorting complexes required for transport (ESCRT) pathway. Tsg101 deletion also led to impaired Src-dependent activation of STAT3 and focal adhesion kinase and reduced cell migration. Impairment of the ESCRT pathway or Rab7 function led to the accumulation of active Src at aberrant LE/LY compartments followed by its loss. Analyses using fluorescence recovery after photo-bleaching show that dynamic mobility of Src in endosomes is ESCRT pathway-dependent. These results reveal a critical role for an ESCRT pathway-dependent LE/LY trafficking step in Src function by promoting localization of active Src to FAs.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Quinases da Família src/metabolismo , Animais , Adesão Celular , Movimento Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Transporte Proteico , Fatores de Transcrição/metabolismo , Quinases da Família src/genética
9.
J Biol Chem ; 286(1): 620-33, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20940296

RESUMO

The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.


Assuntos
Junções Aderentes/metabolismo , Movimento Celular , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Transdução de Sinais , Actinas/metabolismo , Junções Aderentes/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-cbl/deficiência , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-vav/química , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
J Biol Chem ; 285(2): 1555-68, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19826000

RESUMO

Non-malignant mammary epithelial cells (MECs) undergo acinar morphogenesis in three-dimensional Matrigel culture, a trait that is lost upon oncogenic transformation. Rho GTPases are thought to play important roles in regulating epithelial cell-cell junctions, but their contributions to acinar morphogenesis remain unclear. Here we report that the activity of Rho GTPases is down-regulated in non-malignant MECs in three-dimensional culture with particular suppression of Rac1 and Cdc42. Inducible expression of a constitutively active form of Vav2, a Rho GTPase guanine nucleotide exchange factor activated by receptor tyrosine kinases, in three-dimensional MEC culture activated Rac1 and Cdc42; Vav2 induction from early stages of culture impaired acinar morphogenesis, and induction in preformed acini disrupted the pre-established acinar architecture and led to cellular outgrowths. Knockdown studies demonstrated that Rac1 and Cdc42 mediate the constitutively active Vav2 phenotype, whereas in contrast, RhoA knockdown intensified the Vav2-induced disruption of acini, leading to more aggressive cell outgrowth and branching morphogenesis. These results indicate that RhoA plays an antagonistic role to Rac1/Cdc42 in the control of mammary epithelial acinar morphogenesis.


Assuntos
Glândulas Mamárias Humanas/crescimento & desenvolvimento , Morfogênese/fisiologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Transformada , Feminino , Humanos , Glândulas Mamárias Humanas/citologia , Proteínas Proto-Oncogênicas c-vav/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética
11.
J Carcinog ; 10: 28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22190870

RESUMO

The Human Epidermal Growth Factor Receptor 2 (Her2, ErbB2 or Neu) is overexpressed in about 20 - 25% of breast cancers and is causally linked to oncogenesis, providing opportunities for targeted therapy. Trastuzumab (Herceptin(™), Genentech Inc, San Francisco, CA), a humanized monoclonal antibody against ErbB2, is a successful example of this concept and has vastly improved the response to treatment and overall survival in a majority of ErbB2+ breast cancer patients. However, lack of response in some patients as well as relapse during the course of therapy in others, continue to challenge researchers and clinicians alike towards a better understanding of the fundamental mechanisms of Trastuzumab action and resistance to treatment. The exact in vivo mechanism of action of Trastuzumab remains enigmatic, given its direct effects on the ErbB2 signaling pathway as well as indirect contributions from the immune system, by virtue of the ability of Trastuzumab to elicit Antibody-Dependent Cellular Cytotoxicity. Consequently, multiple mechanisms of resistance have been proposed. We present here a comprehensive review of our current understanding of the mechanisms, both of Trastuzumab action and clinical resistance to Trastuzumab-based therapies. We also review newer strategies (based on ErbB2 receptor biology) that are being explored to overcome resistance to Trastuzumab therapy.

12.
J Carcinog ; 10: 29, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22190871

RESUMO

BACKGROUND: Well over a quarter of human breast cancers are ErbB2-driven and constitute a distinct subtype with substantially poorer prognosis. Yet, there are substantial gaps in our understanding of how ErbB2 tyrosine kinase activity unleashes a coordinated program of cellular and extracellular alterations that culminate in aggressive breast cancers. Cellular models that exhibit ErbB2 kinase dependency and can induce metastatic breast cancer in immune competent hosts are likely to help bridge this gap. MATERIALS AND METHODS: Here, we derived and characterized a cell line model obtained from a transgenic ErbB2/Neu-driven mouse mammary adenocarcinoma. RESULTS: The MPPS1 cell line produces metastatic breast cancers when implanted in the mammary fat pads of immune-compromised as well as syngeneic immune-competent hosts. MPPS1 cells maintain high ErbB2 overexpression when propagated in DFCI-1 or related media, and their growth is ErbB2-dependent, as demonstrated by concentration-dependent inhibition of proliferation with the ErbB kinase inhibitor Lapatinib. When grown in 3-dimensional (3-D) culture on Matrigel, MPPS1 cells predominantly form large irregular cystic and solid structures. Remarkably, low concentrations of Lapatinib led to a switch to regular acinar growth on Matrigel. Immunofluorescence staining of control vs. Lapatinib-treated acini for markers of epithelial polarity revealed that inhibition of ErbB2 signaling led to rapid resumption of normal mammary epithelium-like cell polarity. CONCLUSIONS: The strict dependence of the MPPS1 cell system on ErbB2 signals for proliferation and alterations in cell polarity should allow its use to dissect ErbB2 kinase-dependent signaling pathways that promote loss of cell polarity, a key component of the epithelial mesenchymal transition and aggressiveness of ErbB2-driven breast cancers.

13.
Genesis ; 48(5): 328-42, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20213691

RESUMO

The four highly homologous members of the C-terminal EH domain-containing (EHD) protein family (EHD1-4) regulate endocytic recycling. To delineate the role of EHD4 in normal physiology and development, mice with a conditional knockout of the Ehd4 gene were generated. PCR of genomic DNA and Western blotting of organ lysates from Ehd4(-/-) mice confirmed EHD4 deletion. Ehd4(-/-) mice were viable and born at expected Mendelian ratios; however, males showed a 50% reduction in testis weight, obvious from postnatal day 31. An early (Day 10) increase in germ cell proliferation and apoptosis and a later increase in apoptosis (Day 31) were seen in the Ehd4(-/-) testis. Other defects included a progressive reduction in seminiferous tubule diameter, dysregulation of seminiferous epithelium, and head abnormalities in elongated spermatids. As a consequence, lower sperm counts and reduced fertility were observed in Ehd4(-/-) males. Interestingly, EHD protein expression was seen to be temporally regulated in the testis and EHD4 levels peaked between days 10 and 15. In the adult testis, EHD4 was highly expressed in primary spermatocytes and EHD4 deletion altered the levels of other EHD proteins in an age-dependent manner. We conclude that high levels of EHD1 in the adult Ehd4(-/-) testis functionally compensate for lack of EHD4 and prevents the development of severe fertility defects. Our results suggest a role for EHD4 in the proper development of postmitotic and postmeiotic germ cells and implicate EHD protein-mediated endocytic recycling as an important process in germ cell development and testis function.


Assuntos
Proteínas de Ligação a DNA/genética , Fertilidade/genética , Proteínas Nucleares/genética , Testículo/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Feminino , Fertilidade/fisiologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Tamanho do Órgão , Contagem de Espermatozoides , Motilidade dos Espermatozoides/genética , Motilidade dos Espermatozoides/fisiologia , Espermátides/citologia , Espermátides/metabolismo , Testículo/citologia , Testículo/crescimento & desenvolvimento , Fatores de Tempo
14.
J Biol Chem ; 284(39): 26402-10, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19640839

RESUMO

The Ecdysoneless (Ecd) protein is required for cell-autonomous roles in development and oogenesis in Drosophila, but the function of its evolutionarily conserved mammalian orthologs is not clear. To study the cellular function of Ecd in mammalian cells, we generated Ecd(lox/lox) mouse embryonic fibroblast cells from Ecd floxed mouse embryos. Cre-mediated deletion of Ecd in Ecd(lox/lox) mouse embryonic fibroblasts led to a proliferative block due to a delay in G(1)-S cell cycle progression; this defect was reversed by the introduction of human Ecd. Loss of Ecd led to marked down-regulation of E2F target gene expression. Furthermore, Ecd directly bound to Rb at the pocket domain and competed with E2F for binding to hypophosphorylated Rb. Our results demonstrate that mammalian Ecd plays a role in cell cycle progression via the Rb-E2F pathway.


Assuntos
Proteínas de Transporte/fisiologia , Ciclo Celular/fisiologia , Proliferação de Células , Fibroblastos/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Feminino , Fibroblastos/citologia , Fase G1/fisiologia , Expressão Gênica , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Fase S/fisiologia , Fatores de Tempo
15.
BMC Dev Biol ; 10: 37, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20359371

RESUMO

BACKGROUND: The C-terminal Eps15 homology domain-containing protein 1 (EHD1) is ubiquitously expressed and regulates the endocytic trafficking and recycling of membrane components and several transmembrane receptors. To elucidate the function of EHD1 in mammalian development, we generated Ehd1-/- mice using a Cre/loxP system. RESULTS: Both male and female Ehd1-/- mice survived at sub-Mendelian ratios. A proportion of Ehd1-/- mice were viable and showed smaller size at birth, which continued into adulthood. Ehd1-/- adult males were infertile and displayed decreased testis size, whereas Ehd1-/- females were fertile. In situ hybridization and immunohistochemistry of developing wildtype mouse testes revealed EHD1 expression in most cells of the seminiferous epithelia. Histopathology revealed abnormal spermatogenesis in the seminiferous tubules and the absence of mature spermatozoa in the epididymides of Ehd1-/- males. Seminiferous tubules showed disruption of the normal spermatogenic cycle with abnormal acrosomal development on round spermatids, clumping of acrosomes, misaligned spermatids and the absence of normal elongated spermatids in Ehd1-/- males. Light and electron microscopy analyses indicated that elongated spermatids were abnormally phagocytosed by Sertoli cells in Ehd1-/- mice. CONCLUSIONS: Contrary to a previous report, these results demonstrate an important role for EHD1 in pre- and post-natal development with a specific role in spermatogenesis.


Assuntos
Espermatogênese , Proteínas de Transporte Vesicular/metabolismo , Animais , Endocitose , Feminino , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Testículo/metabolismo
16.
Dev Biol ; 316(2): 191-9, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18334253

RESUMO

The lin-12/Notch signaling pathway is conserved from worms to humans and is a master regulator of metazoan development. Here, we demonstrate that lin-12/Notch gain-of-function (gf) animals display precocious alae at the L4 larval stage with a significant increase in let-7 expression levels. Furthermore, lin-12(gf) animals display a precocious and higher level of let-7 gfp transgene expression in seam cells at L3 stage. Interestingly, lin-12(gf) mutant rescued the lethal phenotype of let-7 mutants similar to other known heterochronic mutants. We propose that lin-12/Notch signaling pathway functions in late developmental timing, upstream of or in parallel to the let-7 heterochronic pathway. Importantly, the human microRNA let-7a was also upregulated in various human cell lines in response to Notch 1 activation, suggesting an evolutionarily conserved cross-talk between let-7 and the canonical lin-12/Notch signaling pathway.


Assuntos
Caenorhabditis elegans/genética , MicroRNAs/genética , Mutação , Animais , Animais Geneticamente Modificados , Northern Blotting , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Larva , Fenótipo , Receptores Notch/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Cancer Res ; 67(9): 4164-72, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483327

RESUMO

Epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases, is overexpressed in as many as 60% cases of breast and other cancers. EGFR overexpression is a characteristic of highly aggressive molecular subtypes of breast cancer with basal-like and BRCA1 mutant phenotypes distinct from ErbB2-overexpressing breast cancers. Yet, EGFR is substantially weaker compared with ErbB2 in promoting the oncogenic transformation of nontumorigenic human mammary epithelial cells (human MEC), suggesting a role for cooperating oncogenes. Here, we have modeled the co-overexpression of EGFR and a biologically and clinically relevant potential modifier c-Src in two distinct immortal but nontumorigenic human MECs. Using a combination of morphologic analysis and confocal imaging of polarity markers in three-dimensional Matrigel culture together with functional analyses of early oncogenic traits, we show for the first time that EGFR and c-Src co-overexpression but not EGFR or c-Src overexpression alone unleashes an oncogenic signaling program that leads to hyperproliferation and loss of polarity in three-dimensional acinar cultures, marked enhancement of migratory and invasive behavior, and anchorage-independent growth. Our results establish that EGFR overexpression in an appropriate context (modeled here using c-Src overexpression) can initiate oncogenic transformation of nontumorigenic human MECs and provide a suitable in vitro model to interrogate human breast cancer-relevant oncogenic signaling pathways initiated by overexpressed EGFR and to identify modifiers of EGFR-mediated breast oncogenesis.


Assuntos
Neoplasias da Mama/enzimologia , Transformação Celular Neoplásica/metabolismo , Receptores ErbB/biossíntese , Proteínas Tirosina Quinases/biossíntese , Animais , Neoplasias da Mama/patologia , Proteína Tirosina Quinase CSK , Adesão Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Transformação Celular Neoplásica/patologia , Colágeno , Combinação de Medicamentos , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Humanos , Laminina , Camundongos , Camundongos Nus , Proteoglicanas , Células Tumorais Cultivadas , Quinases da Família src
18.
Oncogene ; 22(4): 528-37, 2003 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-12555066

RESUMO

Breast-cancer-associated gene 1 (BRCA1) is highly expressed in thymus and spleen. In this paper, we have studied lymphocyte development and tumorigenesis in mice carrying mutations in Brca1 and p53. We show that the deletion of Brca1 exon 11 (Brca1-delta11), which disrupts the full-length isoform, but not the short isoform of Brca1, does not interfere with lymphocyte development. This is true irrespective of p53 status, that is, whether it is wild type, heterozygous or homozygous for a null mutation. These data suggest that the expression of Brca1 short isoform alone is enough to maintain normal development of lymphocytes. However, it cannot suppress tumorigenesis as about 30% of Brca1(delta11/delta11)p53(+/-) mice develop thymic lymphoma between 3 and 7 months of age. We demonstrate that p53 plays an essential role in Brca1-associated lymphoma, as all the tumors from Brca1(delta11/delta11)p53(+/-) mice exhibit LOH of p53 and Brca1(delta11/delta11)p53(-/-) mice exhibited accelerated tumorigenesis. We further demonstrate that the Brca1-delta11 deficiency does not affect thymocyte proliferation; however, it increases genetic instability and triggers gamma-irradiation-induced apoptosis. The loss of p53 attenuates apoptosis and allows accumulation of further mutations in Brca1-delta11 thymocytes, eventually leading to thymic lymphoma formation.


Assuntos
Éxons , Genes BRCA1 , Linfócitos/citologia , Linfoma/patologia , Neoplasias do Timo/patologia , Animais , Linhagem da Célula , Perda de Heterozigosidade , Linfoma/genética , Camundongos , Camundongos Knockout , Neoplasias do Timo/genética
19.
Immunol Lett ; 168(2): 319-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26518140

RESUMO

Activation of the NF-κB pathway is causally linked to initiation and progression of diverse cancers. Therefore, IKKß, the key regulatory kinase of the canonical NF-κB pathway, should be a logical target for cancer treatment. However, existing IKKß inhibitors are known to induce paradoxical immune activation, which limits their clinical usefulness. Recently, we identified a quinoxaline urea analog 13-197 as a novel IKKß inhibitor that delays tumor growth without significant adverse effects in xenograft tumor models. In the present study, we found that 13-197 had little effect on LPS-induced NF-κB target gene induction by primary mouse macrophages while maintaining considerable anti-proliferative activities. These characteristics may explain absence of inflammatory side effects in animals treated with 13-197. Our data also demonstrate that the inflammation and proliferation-related functions of IKKß can be uncoupled, and highlight the utility of 13-197 to dissect these downstream pathways.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Quinoxalinas/farmacologia , Animais , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Quinase I-kappa B/imunologia , Quinase I-kappa B/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/imunologia
20.
J Exp Med ; 211(2): 217-31, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24446491

RESUMO

Hematopoietic stem cells (HSCs) are heterogeneous with respect to their self-renewal, lineage, and reconstitution potentials. Although c-Kit is required for HSC function, gain and loss-of-function c-Kit mutants suggest that even small changes in c-Kit signaling profoundly affect HSC function. Herein, we demonstrate that even the most rigorously defined HSCs can be separated into functionally distinct subsets based on c-Kit activity. Functional and transcriptome studies show HSCs with low levels of surface c-Kit expression (c-Kit(lo)) and signaling exhibit enhanced self-renewal and long-term reconstitution potential compared with c-Kit(hi) HSCs. Furthermore, c-Kit(lo) and c-Kit(hi) HSCs are hierarchically organized, with c-Kit(hi) HSCs arising from c-Kit(lo) HSCs. In addition, whereas c-Kit(hi) HSCs give rise to long-term lymphomyeloid grafts, they exhibit an intrinsic megakaryocytic lineage bias. These functional differences between c-Kit(lo) and c-Kit(hi) HSCs persist even under conditions of stress hematopoiesis induced by 5-fluorouracil. Finally, our studies show that the transition from c-Kit(lo) to c-Kit(hi) HSC is negatively regulated by c-Cbl. Overall, these studies demonstrate that HSCs exhibiting enhanced self-renewal potential can be isolated based on c-Kit expression during both steady state and stress hematopoiesis. Moreover, they provide further evidence that the intrinsic functional heterogeneity previously described for HSCs extends to the megakaryocytic lineage.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Linhagem da Célula , Proliferação de Células , Ensaio de Unidades Formadoras de Colônias , Fluoruracila/farmacologia , Perfilação da Expressão Gênica , Hematopoese/genética , Hematopoese/fisiologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/classificação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-kit/genética , Trombopoese/genética , Trombopoese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA