Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610380

RESUMO

Environmental monitoring and the detection of antibiotic contaminants require expensive and time-consuming techniques. To overcome these challenges, gold nanoparticle-mediated fluorometric "turn-on" detection of Polymyxin B (PMB) in an aqueous medium was undertaken. The molecular weight of polyethyleneimine (PEI)-dependent physicochemical tuning of gold nanoparticles (PEI@AuNPs) was achieved and employed for the same. The three variable molecular weights of branched polyethyleneimine (MW 750, 60, and 1.3 kDa) molecules controlled the nano-geometry of the gold nanoparticles along with enhanced stabilization at room temperature. The synthesized gold nanoparticles were characterized through various advanced techniques. The results revealed that polyethyleneimine-stabilized gold nanoparticles (PEI@AuNP-1-3) were 4.5, 7.0, and 52.5 nm in size with spherical shapes, and the zeta potential values were 29.9, 22.5, and 16.6 mV, respectively. Accordingly, the PEI@AuNPs probes demonstrated high sensitivity and selectivity, with a linear relationship curve over a concentration range of 1-6 µM for polymyxin B. The limit of detection (LOD) was calculated as 8.5 nM. This is the first unique report of gold nanoparticle nano-geometry-dependent FRET-based turn-on detection of PMB in an aqueous medium. We believe that this approach would offer a complementary strategy for the development of a highly sophisticated and advanced sensing system for PMB and act as a template for the development of new nanomaterial-based engineered sensors for rapid antibiotic detection in environmental as well as biological samples.


Assuntos
Nanopartículas Metálicas , Polimixina B , Ouro , Peso Molecular , Polietilenoimina , Transferência Ressonante de Energia de Fluorescência , Antibacterianos
2.
Nanotechnology ; 34(30)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158486

RESUMO

A new type of heavy-metal free single-element nanomaterial, called sulfur quantum dots (SQDs), has gained significant attention due to its advantages over traditional semiconductor QDs for several biomedical and optoelectronic applications. A straightforward and rapid synthesis approach for preparing highly fluorescent SQDs is needed to utilize this nanomaterial for technological applications. Until now, only a few synthesis approaches have been reported; however, these approaches are associated with long reaction times and low quantum yields (QY). Herein, we propose a novel optimized strategy to synthesize SQDs using a mix of probe sonication and heating, which reduces the reaction time usually needed from 125 h to a mere 15 min. The investigation employs cavitation and vibration effects of high energy acoustic waves to break down the bulk sulfur into nano-sized particles in the presence of highly alkaline medium and oleic acid. In contrast to previous reports, the obtained SQDs exhibited excellent aqueous solubility, desirable photostability, and a relatively high photoluminescence QY up to 10.4% without the need of any post-treatment. Additionally, the as-synthesized SQDs show excitation-dependent emission and excellent stability in different pH (2-12) and temperature (20 °C-80 °C) environments. Hence, this strategy opens a new pathway for rapid synthesis of SQDs and may facilitate the use of these materials for biomedical and optoelectronic applications.

3.
Nanotechnology ; 32(43)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34198280

RESUMO

Nanodiamond (ND) synthesis by nanosecond laser irradiation has sparked tremendous scientific and technological interest. This review describes efforts to obtain cost-effective ND synthesis from polymers and carbon nanotubes (CNT) by the melting route. For polymers, ultraviolet (UV) irradiation triggers intricate photothermal and photochemical processes that result in photochemical degradation, subsequently generating an amorphous carbon film; this process is followed by melting and undercooling of the carbon film at rates exceeding 109K s-1. Multiple laser shots increase the absorption coefficient of PTFE, resulting in the growth of 〈110〉 oriented ND film. Multiple laser shots on CNTs result in pseudo topotactic diamond growth to form a diamond fiber. This technique is useful for fabricating 4-50 nm sized NDs. These NDs can further be employed as seed materials that are used in bulk epitaxial growth of microdiamonds using chemical vapor deposition, particularly for use with non-lattice matched substrates that formerly did not form continuous and adherent films. We also provide insights into biocompatible precursors for ND synthesis such as polybenzimidazole fiber. ND fabrication by UV irradiation of graphitic and polymeric carbon opens up a pathway for preparing selective coatings of polymer-diamond composites, doped nanodiamonds, and graphene composites for quantum computing and biomedical applications.

4.
Nanotechnology ; 32(13): 132001, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33307540

RESUMO

Nanostructured forms of diamond have been recently considered for use in a variety of medical devices due to their unusual biocompatibility, corrosion resistance, hardness, wear resistance, and electrical properties. This review considers several routes for the synthesis of nanostructured diamond, including chemical vapor deposition, hot filament chemical vapor deposition, microwave plasma-enhanced chemical vapor deposition, radio frequency plasma-enhanced chemical vapor deposition, and detonation synthesis. The properties of nanostructured diamond relevant to medical applications are described, including biocompatibility, surface modification, and cell attachment properties. The use of nanostructured diamond for bone cell interactions, stem cell interactions, imaging applications, gene therapy applications, and drug delivery applications is described. The results from recent studies indicate that medical devices containing nanostructured diamond can provide improved functionality over existing materials for the diagnosis and treatment of various medical conditions.

5.
Molecules ; 26(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198596

RESUMO

Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Flavonoides/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Flavonoides/química , Lasers/normas , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
6.
J Mater Res ; 35(18): 2405-2415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424108

RESUMO

Synthetic cationic polymer-mediated synthesis of silver nanoparticles and selective antimicrobial activity of the same were demonstrated. Polyethyleneimine (PEI)-coated silver nanoparticles showed antimicrobial activity against Acinetobacter baumannii as a function of the polymeric molecular weight (MW) of PEI. Silver nanoparticles were coated with PEI of three different MWs: Ag-NP-1 with PEI exhibiting a MW of 750,000, Ag-NP-2 with PEI exhibiting a MW of 1300, and Ag-NP-3 with PEI exhibiting a MW of 60,000. These nanoparticles showed a particle size distribution of 4-20 nm. The nanoparticles exhibited potent antimicrobial activity against A. baumannii, with the minimum inhibitory concentration of Ag-NP-1, Ag-NP-2, and Ag-NP-3 on the order of 5, 10, and 5 µg/mL, respectively, and minimum bactericidal concentration of Ag-NP-1, Ag-NP-2, and Ag-NP-3 on the order of 10, 20, and 10 µg/mL, respectively. Fluorescence imaging of Ag-NPs revealed selective transfusion of Ag-NPs across the cell membrane as a function of the polymeric MW; differential interaction of the cytoplasmic proteins during antimicrobial activity was observed.

7.
Biomed Microdevices ; 21(1): 8, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617619

RESUMO

Current therapeutic options against cutaneous leishmaniasis are plagued by several weaknesses. The effective topical delivery of an antileishmanial drug would be useful in treating some forms of cutaneous leishmaniasis. Toward this end, a microneedle based delivery approach for the antileishmanial drug amphotericin B was investigated in murine models of both New World (Leishmania mexicana) and Old World (Leishmania major) infection. In the L. mexicana model, ten days of treatment began on day 35 post infection, when the area of nodules averaged 9-15 mm2. By the end of the experiment, a significant difference in nodule area was observed for all groups receiving topical amphotericin B at 25 mg/kg/day after application of microneedle arrays of 500, 750, and 1000 µM in nominal length compared to the group that received this dose of topical amphotericin B alone. In the L. major model, ten days of treatment began on day 21 post infection when nodule area averaged 51-65 mm2 in the groups. By the end of the experiment, there was no difference in nodule area between the group receiving 25 mg/kg of topical amphotericin B after microneedle application and any of the non-AmBisome groups. These results show the promise of topical delivery of amphotericin B via microneedles in treating relatively small nodules caused by L. mexicana. These data also show the limitations of the approach against a disseminated L. major infection. Further optimization of microneedle delivery is needed to fully exploit this strategy for cutaneous leishmaniasis treatment.


Assuntos
Anfotericina B/farmacologia , Sistemas de Liberação de Medicamentos , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/tratamento farmacológico , Agulhas , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/métodos , Feminino , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/patologia , Camundongos , Camundongos Endogâmicos BALB C
8.
Sensors (Basel) ; 19(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823435

RESUMO

In this manuscript, recent advancements in the area of minimally-invasive transdermal biosensing and drug delivery are reviewed. The administration of therapeutic entities through the skin is complicated by the stratum corneum layer, which serves as a barrier to entry and retards bioavailability. A variety of strategies have been adopted for the enhancement of transdermal permeation for drug delivery and biosensing of various substances. Physical techniques such as iontophoresis, reverse iontophoresis, electroporation, and microneedles offer (a) electrical amplification for transdermal sensing of biomolecules and (b) transport of amphiphilic drug molecules to the targeted site in a minimally invasive manner. Iontophoretic delivery involves the application of low currents to the skin as well as the migration of polarized and neutral molecules across it. Transdermal biosensing via microneedles has emerged as a novel approach to replace hypodermic needles. In addition, microneedles have facilitated minimally invasive detection of analytes in body fluids. This review considers recent innovations in the structure and performance of transdermal systems.


Assuntos
Técnicas Biossensoriais/métodos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/administração & dosagem , Administração Cutânea , Animais , Eletroporação/métodos , Humanos , Iontoforese/métodos , Agulhas
9.
J Mater Sci Mater Med ; 27(12): 187, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27796686

RESUMO

Nanostructured biomaterials have been investigated for achieving desirable tissue-material interactions in medical implants. Ultrananocrystalline diamond (UNCD) and nanocrystalline diamond (NCD) coatings are the two most studied classes of synthetic diamond coatings; these materials are grown using chemical vapor deposition and are classified based on their nanostructure, grain size, and sp3 content. UNCD and NCD are mechanically robust, chemically inert, biocompatible, and wear resistant, making them ideal implant coatings. UNCD and NCD have been recently investigated for ophthalmic, cardiovascular, dental, and orthopaedic device applications. The aim of this study was (a) to evaluate the in vitro biocompatibility of UNCD and NCD coatings and (b) to determine if variations in surface topography and sp3 content affect cellular response. Diamond coatings with various nanoscale topographies (grain sizes 5-400 nm) were deposited on silicon substrates using microwave plasma chemical vapor deposition. Scanning electron microscopy and atomic force microscopy revealed uniform coatings with different scales of surface topography; Raman spectroscopy confirmed the presence of carbon bonding typical of diamond coatings. Cell viability, proliferation, and morphology responses of human bone marrow-derived mesenchymal stem cells (hBMSCs) to UNCD and NCD surfaces were evaluated. The hBMSCs on UNCD and NCD coatings exhibited similar cell viability, proliferation, and morphology as those on the control material, tissue culture polystyrene. No significant differences in cellular response were observed on UNCD and NCD coatings with different nanoscale topographies. Our data shows that both UNCD and NCD coatings demonstrate in vitro biocompatibility irrespective of surface topography.


Assuntos
Diamante/química , Nanopartículas/química , Nanoestruturas/química , Células da Medula Óssea/citologia , Proliferação de Células , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/química , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Micro-Ondas , Poliestirenos/química , Silício/química , Análise Espectral Raman , Propriedades de Superfície
10.
JOM (1989) ; 68(4): 1128-1133, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33597793

RESUMO

Itraconazole is a triazole agent that is routinely used for treatment of nail infections and other fungal infections. Recent studies indicate that itraconazole can also inhibit the growth of basal cell carcinoma (BCC) through suppression of the Sonic Hedgehog (SHH) signaling pathway. In this study, polyglycolic acid microneedle arrays and stainless steel microneedle arrays were used for transdermal delivery of itraconazole to a human BCC model which was regenerated on mice. One-by-four arrays of 642-µm-long polyglycolic acid microneedles with sharp tips were prepared using injection molding and drawing lithography. Arrays of 85 stainless steel 800-µm-tall microneedles attached to syringes were obtained for comparison purposes. Skin grafts containing devitalized split-thickness human dermis that had been seeded with human keratinocytes transduced to express human SHH protein were sutured to the skin of immunodeficient mice. Mice with this human BCC model were treated daily for 2 weeks with itraconazole dissolved in 60% dimethylsulfoxane and 40% polyethylene glycol-400 solution; transdermal administration of the itraconazole solution was facilitated by either four 1 × 4 polyglycolic acid microneedle arrays or stainless steel microneedle arrays. The epidermal tissues treated with polyglycolic acid microneedles or stainless steel microneedles were markedly thinner than that of the control (untreated) graft tissue. These preliminary results indicate that microneedles may be used to facilitate transdermal delivery of itraconazole for localized treatment of BCC.

11.
J Mater Sci Mater Med ; 25(3): 845-56, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24306145

RESUMO

Several recent research efforts have focused on use of computer-aided additive fabrication technologies, commonly referred to as additive manufacturing, rapid prototyping, solid freeform fabrication, or three-dimensional printing technologies, to create structures for tissue engineering. For example, scaffolds for tissue engineering may be processed using rapid prototyping technologies, which serve as matrices for cell ingrowth, vascularization, as well as transport of nutrients and waste. Stereolithography is a photopolymerization-based rapid prototyping technology that involves computer-driven and spatially controlled irradiation of liquid resin. This technology enables structures with precise microscale features to be prepared directly from a computer model. In this review, use of stereolithography for processing trimethylene carbonate, polycaprolactone, and poly(D,L-lactide) poly(propylene fumarate)-based materials is considered. In addition, incorporation of bioceramic fillers for fabrication of bioceramic scaffolds is reviewed. Use of stereolithography for processing of patient-specific implantable scaffolds is also discussed. In addition, use of photopolymerization-based rapid prototyping technology, known as two-photon polymerization, for production of tissue engineering scaffolds with smaller features than conventional stereolithography technology is considered.


Assuntos
Regeneração Tecidual Guiada/instrumentação , Fotografação/métodos , Desenho de Prótese/métodos , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Imageamento Tridimensional/métodos , Desenho de Prótese/instrumentação , Engenharia Tecidual/métodos
12.
J Craniofac Surg ; 25(1): 111-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24406561

RESUMO

OBJECTIVE: Microtia is treated with rib cartilage sculpting and staged procedures; though aesthetically pleasing, these constructs lack native ear flexibility. Tissue-engineered (TE) elastic cartilage may bridge this gap; however, TE cartilage implants lead to hypertrophic changes with calcification and loss of flexibility. Retaining flexibility in TE cartilage must focus on increased elastin, maintained collagen II, decreased collagen X, with prevention of calcification. This study compares biochemical properties of human cartilage to TE cartilage from umbilical cord mesenchymal stem cells (UCMSCs). Our goal is to establish a baseline for clinically useful TE cartilage. METHODS: Discarded cartilage from conchal bowl, microtic ears, preauricular tags, rib, and TE cartilage were evaluated for collagen I, II, X, calcium, glycosaminoglycans, elastin, and fibrillin I and III. Human UCMSCs were chondroinduced on 2D surfaces and 3D D,L-lactide-co-glycolic acid (PLGA) fibers. RESULTS: Cartilage samples demonstrated similar staining for collagens I, II, and X, elastin, and fibrillin I and III, but differed from rib. TE pellets and PLGA-supported cartilage were similar to auricular samples in elastin and fibrillin I staining. TE samples were exclusively stained for fibrillin III. Only microtic samples demonstrated calcium staining. CONCLUSIONS: TE cartilage expressed similar levels of elastin, fibrillin I, and collagens I and X when compared to native cartilage. Microtic cartilage demonstrated elevated calcium, suggesting this abnormal tissue may not be a viable cell source for TE cartilage. TE cartilage appears to recapitulate the embryonic development of fibrillin III, which is not expressed in adult tissue, possibly providing a strategy to control TE elastic cartilage phenotype.


Assuntos
Cartilagem/química , Engenharia Tecidual/métodos , Cálcio/química , Proteínas de Ligação ao Cálcio/química , Condrogênese/fisiologia , Colágeno Tipo I/química , Colágeno Tipo II/química , Colágeno Tipo X/química , Pavilhão Auricular/anormalidades , Cartilagem da Orelha/química , Elastina/química , Proteínas da Matriz Extracelular/química , Fibrilinas , Glicosaminoglicanos/química , Humanos , Processamento de Imagem Assistida por Computador/métodos , Células-Tronco Mesenquimais/fisiologia , Proteínas dos Microfilamentos/química , Costelas/química , Cordão Umbilical/citologia
13.
Biosensors (Basel) ; 14(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38248426

RESUMO

Glutathione (GSH) and nickel (II) cation have an indispensable role in various physiological processes, including preventing the oxidative damage of cells and acting as a cofactor for lipid metabolic enzymes. An imbalance in the physiological level of these species may cause serious health complications. Therefore, sensitive and selective fluorescent probes for the detection of GSH and nickel (II) are of great interest for clinical as well as environmental monitoring. Herein, vancomycin-conjugated gold nanoparticles (PEI-AuNP@Van) were prepared and employed for the detection of GSH and nickel (II) based on a turn-on-off mechanism. The as-synthesized PEI-AuNP@Van was ~7.5 nm in size; it exhibited a spherical shape with face-centered cubic lattice symmetry. As compared to vancomycin unconjugated gold nanoparticles, GSH led to the turn-on state of PEI-AuNP@Van, while Ni2+ acted as a fluorescence quencher (turn-off) without the aggregation of nanoparticles. These phenomena strongly justify the active role of vancomycin conjugation for the detection of GSH and Ni2+. The turn-on-off kinetics was linearly proportional over the concentration range between 0.05-0.8 µM and 0.05-6.4 µM. The detection limits were 205.9 and 90.5 nM for GSH and Ni2+, respectively; these results are excellent in comparison to previous reports. This study demonstrates the active role of vancomycin conjugation for sensing of GSH and Ni2+ along with PEI-AuNP@Van as a promising nanoprobe.


Assuntos
Nanopartículas Metálicas , Níquel , Ouro , Vancomicina , Glutationa
14.
Comput Struct Biotechnol J ; 21: 4149-4158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675288

RESUMO

Functionalized nanotubes (NTs), nanosheets, nanorods, and porous organometallic scaffolds are potential in vivo carriers for cancer therapeutics. Precise delivery through these agents depends on factors like hydrophobicity, payload capacity, bulk/surface adsorption, orientation of molecules inside the host matrix, bonding, and nonbonding interactions. Herein, we summarize advances in simulation techniques, which are extremely valuable in initial geometry optimization and evaluation of the loading and unloading behavior of encapsulated drug molecules. Computational methods broadly involve the use of quantum and classical mechanics for studying the behavior of molecular properties. Combining theoretical processes with experimental techniques, such as X-ray crystallography, NMR spectroscopy, and bioassays, can provide a more comprehensive understanding of the structure and function of biological molecules. This integrated approach has led to numerous breakthroughs in drug discovery, enzyme design, and the study of complex biological processes. This short review provides an overview of results and challenges described from erstwhile investigations on the molecular interaction of anticancer drugs with nanocarriers of different aspect ratios.

15.
JID Innov ; 3(6): 100225, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37744689

RESUMO

The history of transdermal drug delivery is as old as humankind. Transdermal drug delivery has undergone three generations of development; the third generation has involved the use of medical devices and instruments. This review provides a historical perspective on the primary approaches employed in the three generations of transdermal drug delivery. In addition, we explore some of the recently developed transdermal techniques that are deemed promising in the field of drug delivery. We discuss how advances in these techniques have led to the development of devices for the delivery of a therapeutically effective amount of drug across human skin and highlight the limitations of the first- and second-generation drug delivery tools. As such, a review of the performance of these techniques and the toxicity of the devices used in transdermal drug delivery are considered. In the last section of the review, a discussion of the fabrication and operation of different types of microneedles is presented. The applications of microneedles in the sensing and delivery of various therapeutic agents are described in detail. Furthermore, an overview of the efficacy of microneedles as emerging tools for the controlled release of drugs is presented.

16.
Front Microbiol ; 14: 1131122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925472

RESUMO

The antimicrobial activity of metal nanoparticles can be considered a two-step process. In the first step, nanoparticles interact with the cell surface; the second step involves the implementation of the microbicidal processes. Silver nanoparticles have been widely explored for their antimicrobial activity against many pathogens. The interaction dynamics of functionalized silver nanoparticles at the biological interface must be better understood to develop surface-tuned biocompatible nanomaterial-containing formulations with selective antimicrobial activity. Herein, this study used the intrinsic fluorescence of whole C. albicans cells as a molecular probe to understand the cell surface interaction dynamics of polyethyleneimine-functionalized silver nanoparticles and antifungal mechanism of the same. The results demonstrated that synthesized PEI-f-Ag-NPs were ~ 5.6 ± 1.2 nm in size and exhibited a crystalline structure. Furthermore, the recorded zeta potential (+18.2 mV) was associated with the stability of NPS and shown a strong electrostatic interaction tendency between the negatively charged cell surface. Thus, rapid killing kinetics was observed, with a remarkably low MIC value of 5 µg/mL. PEI-f-Ag-NPs quenched the intrinsic fluorescence of C. albicans cells with increasing incubation time and concentration and have shown saturation effect within 120 min. The calculated binding constant (Kb = 1 × 105 M-1, n = 1.01) indicated strong binding tendency of PEI-f-Ag-NPs with C. albicans surface. It should also be noted that the silver nanoparticles interacted more selectively with the tyrosine-rich proteins in the fungal cell. However, calcofluor white fluorescence quenching showed non-specific binding on the cell surface. Thus, the antifungal mechanisms of PEI-f-Ag-NPs were observed as reactive oxygen species (ROS) overproduction and cell wall pit formation. This study demonstrated the utility of fluorescence spectroscopy for qualitative analysis of polyethyleneimine-functionalized silver nanoparticle interaction/binding with C. albicans cell surface biomolecules. Although, a quantitative approach is needed to better understand the interaction dynamics in order to formulate selective surface tuned nanoparticle for selective antifungal activity.

17.
Front Chem ; 11: 1238631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593107

RESUMO

Mercury ions (Hg2+) are widely found in the environment; it is considered a major pollutant. Therefore, the rapid and reliable detection of Hg2+ is of great technical interest. In this study, a highly fluorescent, sensitive, and selective fluorometric assay for detecting Hg2+ ions was developed using vancomycin functionalized and polyethyleneimine stabilized gold nanoparticles (PEI-f-AuNPs@Van). The as-made gold nanoparticles were highly fluorescent, with excitation and emission maxima occurring at 320 and 418 nm, respectively. The size of nanoparticles was ~7 nm; a zeta potential of ~38.8 mV was determined. The XRD analysis confirmed that the nanoparticles possessed crystalline structure with face centerd cubic symmetry. Using the PEI-f-AuNP@Van probe, the detection limit of Hg2+ ion was achieved up to 0.988 nM (within a linear range) by calculating the KSV. However, the detection limit in a natural environmental sample was shown to be 12.5 nM. Furthermore, the selectivity tests confirmed that the designed probe was highly selective to mercury (II) cations among tested other divalent cations. Owing to its sensitivity and selectivity, this approach for Hg2+ ions detection can be utilized for the analysis of real water samples.

18.
Appl Phys Rev ; 10: 041310, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38229764

RESUMO

Nitric oxide (NO) signaling plays many pivotal roles impacting almost every organ function in mammalian physiology, most notably in cardiovascular homeostasis, inflammation, and neurological regulation. Consequently, the ability to make real-time and continuous measurements of NO is a prerequisite research tool to understand fundamental biology in health and disease. Despite considerable success in the electrochemical sensing of NO, challenges remain to optimize rapid and highly sensitive detection, without interference from other species, in both cultured cells and in vivo. Achieving these goals depends on the choice of electrode material and the electrode surface modification, with graphene nanostructures recently reported to enhance the electrocatalytic detection of NO. Due to its single-atom thickness, high specific surface area, and highest electron mobility, graphene holds promise for electrochemical sensing of NO with unprecedented sensitivity and specificity even at sub-nanomolar concentrations. The non-covalent functionalization of graphene through supermolecular interactions, including π-π stacking and electrostatic interaction, facilitates the successful immobilization of other high electrolytic materials and heme biomolecules on graphene while maintaining the structural integrity and morphology of graphene sheets. Such nanocomposites have been optimized for the highly sensitive and specific detection of NO under physiologically relevant conditions. In this review, we examine the building blocks of these graphene-based electrochemical sensors, including the conjugation of different electrolytic materials and biomolecules on graphene, and sensing mechanisms, by reflecting on the recent developments in materials and engineering for real-time detection of NO in biological systems.

19.
J Biomed Mater Res B Appl Biomater ; 111(5): 987-995, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444900

RESUMO

Integration of native bone into orthopedic devices is a key factor in long-term implant success. The material-tissue interface is generally accepted to consist of a hydroxyapatite layer so bioactive materials that can spontaneously generate this hydroxyapatite layer after implantation may improve patient outcomes. Per the ISO 22317:2014 standard, "Implants for surgery - In vitro evaluation for apatite-forming ability of implant materials," bioactivity performance statements can be assessed by soaking the material in simulated body fluid (SBF) and evaluating the surface for the formation of a hydroxyapatite layer; however, variations in test methods may alter hydroxyapatite formation and result in false-positive assessments. The goal of this study was to identify the effect of SBF formulation on bioactivity assessment. Bioglass® (45S5 and S53P4) and non-bioactive Ti-6Al-4V were exposed to SBF formulations varying in calcium ion and phosphate concentrations as well as supporting ion concentrations. Scanning electron microscopy and X-ray powder diffraction evaluation of the resulting hydroxyapatite layers revealed that SBF enriched with double or quadruple the calcium and phosphate ion concentrations increased hydroxyapatite crystal size and quantity compared to the standard formulation and can induce hydroxyapatite crystallization on surfaces traditionally considered non-bioactive. Altering concentrations of other ions, for example, bicarbonate, changed hydroxyapatite induction time, quantity, and morphology. For studies evaluating the apatite-forming ability of a material to support bioactivity performance statements, test method parameters must be adequately described and controlled. It is unclear if apatite formation after exposure to any of the SBF formulations is representative of an in vivo biological response. The ISO 23317 standard test method should be further developed to provide additional guidance on apatite characterization and interpretation of the results.


Assuntos
Apatitas , Líquidos Corporais , Humanos , Apatitas/química , Cálcio/química , Propriedades de Superfície , Durapatita/química , Líquidos Corporais/química , Microscopia Eletrônica de Varredura , Difração de Raios X
20.
Transl Biophotonics ; 4(1-2): e202200001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602265

RESUMO

The COVID-19 pandemic that began in March 2020 continues in many countries. The ongoing pandemic makes early diagnosis a crucial part of efforts to prevent the spread of SARS-CoV-2 infections. As such, the development of a rapid, reliable, and low-cost technique with increased sensitivity for detection of SARS-CoV-2 is an important priority of the scientific community. At present, nucleic acid-based techniques are primarily used as the reference approach for the detection of SARS-CoV-2 infection. However, in several cases, false positive results have been observed with these techniques. Due to the drawbacks associated with existing techniques, the development of new techniques for the diagnosis of COVID-19 is an important research activity. We provide an overview of novel diagnostic methods for SARS-CoV-2 diagnosis that integrate photonic technology with artificial intelligence. Recent developments in emerging diagnostic techniques based on the principles of advanced molecular spectroscopy and microscopy are considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA