Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Bioinformatics ; 18(1): 124, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28231759

RESUMO

BACKGROUND: In the evaluation of Stereo-Electroencephalography (SEEG) signals, the physicist's workflow involves several operations, including determining the position of individual electrode contacts in terms of both relationship to grey or white matter and location in specific brain regions. These operations are (i) generally carried out manually by experts with limited computer support, (ii) hugely time consuming, and (iii) often inaccurate, incomplete, and prone to errors. RESULTS: In this paper we present SEEG Assistant, a set of tools integrated in a single 3DSlicer extension, which aims to assist neurosurgeons in the analysis of post-implant structural data and hence aid the neurophysiologist in the interpretation of SEEG data. SEEG Assistant consists of (i) a module to localize the electrode contact positions using imaging data from a thresholded post-implant CT, (ii) a module to determine the most probable cerebral location of the recorded activity, and (iii) a module to compute the Grey Matter Proximity Index, i.e. the distance of each contact from the cerebral cortex, in order to discriminate between white and grey matter location of contacts. Finally, exploiting 3DSlicer capabilities, SEEG Assistant offers a Graphical User Interface that simplifies the interaction between the user and the tools. SEEG Assistant has been tested on 40 patients segmenting 555 electrodes, and it has been used to identify the neuroanatomical loci and to compute the distance to the nearest cerebral cortex for 9626 contacts. We also performed manual segmentation and compared the results between the proposed tool and gold-standard clinical practice. As a result, the use of SEEG Assistant decreases the post implant processing time by more than 2 orders of magnitude, improves the quality of results and decreases, if not eliminates, errors in post implant processing. CONCLUSIONS: The SEEG Assistant Framework for the first time supports physicists by providing a set of open-source tools for post-implant processing of SEEG data. Furthermore, SEEG Assistant has been integrated into 3D Slicer, a software platform for the analysis and visualization of medical images, overcoming limitations of command-line tools.


Assuntos
Epilepsia/cirurgia , Imageamento Tridimensional , Interface Usuário-Computador , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Eletrodos Implantados , Eletroencefalografia , Epilepsia/patologia , Feminino , Humanos
2.
Neurosurg Focus ; 42(5): E8, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28463615

RESUMO

OBJECTIVE The purpose of this study was to compare the accuracy of Neurolocate frameless registration system and frame-based registration for robotic stereoelectroencephalography (SEEG). METHODS The authors performed a 40-trajectory phantom laboratory study and a 127-trajectory retrospective analysis of a surgical series. The laboratory study was aimed at testing the noninferiority of the Neurolocate system. The analysis of the surgical series compared Neurolocate-based SEEG implantations with a frame-based historical control group. RESULTS The mean localization errors (LE) ± standard deviations (SD) for Neurolocate-based and frame-based trajectories were 0.67 ± 0.29 mm and 0.76 ± 0.34 mm, respectively, in the phantom study (p = 0.35). The median entry point LE was 0.59 mm (interquartile range [IQR] 0.25-0.88 mm) for Neurolocate-registration-based trajectories and 0.78 mm (IQR 0.49-1.08 mm) for frame-registration-based trajectories (p = 0.00002) in the clinical study. The median target point LE was 1.49 mm (IQR 1.06-2.4 mm) for Neurolocate-registration-based trajectories and 1.77 mm (IQR 1.25-2.5 mm) for frame-registration-based trajectories in the clinical study. All the surgical procedures were successful and uneventful. CONCLUSIONS The results of the phantom study demonstrate the noninferiority of Neurolocate frameless registration. The results of the retrospective surgical series analysis suggest that Neurolocate-based procedures can be more accurate than the frame-based ones. The safety profile of Neurolocate-based registration should be similar to that of frame-based registration. The Neurolocate system is comfortable, noninvasive, easy to use, and potentially faster than other registration devices.


Assuntos
Procedimentos Neurocirúrgicos , Técnicas Estereotáxicas/instrumentação , Cirurgia Assistida por Computador , Tato/fisiologia , Encefalopatias/cirurgia , Eletrodos Implantados , Eletroencefalografia/métodos , Humanos , Procedimentos Neurocirúrgicos/instrumentação , Procedimentos Neurocirúrgicos/métodos , Estudos Retrospectivos , Robótica , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos
3.
BMC Bioinformatics ; 16: 99, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25887573

RESUMO

BACKGROUND: Invasive monitoring of brain activity by means of intracerebral electrodes is widely practiced to improve pre-surgical seizure onset zone localization in patients with medically refractory seizures. Stereo-Electroencephalography (SEEG) is mainly used to localize the epileptogenic zone and a precise knowledge of the location of the electrodes is expected to facilitate the recordings interpretation and the planning of resective surgery. However, the localization of intracerebral electrodes on post-implant acquisitions is usually time-consuming (i.e., manual segmentation), it requires advanced 3D visualization tools, and it needs the supervision of trained medical doctors in order to minimize the errors. In this paper we propose an automated segmentation algorithm specifically designed to segment SEEG contacts from a thresholded post-implant Cone-Beam CT volume (0.4 mm, 0.4 mm, 0.8 mm). The algorithm relies on the planned position of target and entry points for each electrode as a first estimation of electrode axis. We implemented the proposed algorithm into DEETO, an open source C++ prototype based on ITK library. RESULTS: We tested our implementation on a cohort of 28 subjects in total. The experimental analysis, carried out over a subset of 12 subjects (35 multilead electrodes; 200 contacts) manually segmented by experts, show that the algorithm: (i) is faster than manual segmentation (i.e., less than 1s/subject versus a few hours) (ii) is reliable, with an error of 0.5 mm ± 0.06 mm, and (iii) it accurately maps SEEG implants to their anatomical regions improving the interpretability of electrophysiological traces for both clinical and research studies. Moreover, using the 28-subject cohort we show here that the algorithm is also robust (error < 0.005 mm) against deep-brain displacements (< 12 mm) of the implanted electrode shaft from those planned before surgery. CONCLUSIONS: Our method represents, to the best of our knowledge, the first automatic algorithm for the segmentation of SEEG electrodes. The method can be used to accurately identify the neuroanatomical loci of SEEG electrode contacts by a non-expert in a fast and reliable manner.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Eletrodos , Eletroencefalografia/instrumentação , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Int J Comput Assist Radiol Surg ; 12(10): 1727-1738, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28710548

RESUMO

PURPOSE: Focal epilepsy is a neurological disease that can be surgically treated by removing area of the brain generating the seizures. The stereotactic electroencephalography (SEEG) procedure allows patient brain activity to be recorded in order to localize the onset of seizures through the placement of intracranial electrodes. The planning phase can be cumbersome and very time consuming, and no quantitative information is provided to neurosurgeons regarding the safety and efficacy of their trajectories. In this work, we present a novel architecture specifically designed to ease the SEEG trajectory planning using the 3D Slicer platform as a basis. METHODS: Trajectories are automatically optimized following criteria like vessel distance and insertion angle. Multi-trajectory optimization and conflict resolution are optimized through a selective brute force approach based on a conflict graph construction. Additionally, electrode-specific optimization constraints can be defined, and an advanced verification module allows neurosurgeons to evaluate the feasibility of the trajectory. RESULTS: A retrospective evaluation was performed using manually planned trajectories on 20 patients: the planning algorithm optimized and improved trajectories in 98% of cases. We were able to resolve and optimize the remaining 2% by applying electrode-specific constraints based on manual planning values. In addition, we found that the global parameters used discards 68% of the manual planned trajectories, even when they represent a safe clinical choice. CONCLUSIONS: Our approach improved manual planned trajectories in 98% of cases in terms of quantitative indexes, even when applying more conservative criteria with respect to actual clinical practice. The improved multi-trajectory strategy overcomes the previous work limitations and allows electrode optimization within a tolerable time span.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Eletrodos Implantados , Eletroencefalografia/instrumentação , Epilepsia/cirurgia , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Encéfalo/cirurgia , Epilepsia/diagnóstico , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA