Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biochem Biophys Res Commun ; 616: 110-114, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653825

RESUMO

Earlier it was shown that a group of extracellular low-specific metallopeptidases is present in the mammalian brain Kropotova and Mosevitsky (2016) [1]. These enzymes are weakly connected to the axonal ends of neurons. They were named Neuron bound Extracellular MetalloPeptidases (NEMP). The enzyme named NEMP3 turned out to be a unique exopeptidase that exhibits two activities: it removes the dipeptide from the N-end of the peptide, and it can also remove the tripeptide from the C-end of the peptide. Therefore, NEMP3 possesses the activities of dipeptidylaminopeptidase and of tripeptidylcarboxypeptidase. Mass spectrometry has revealed a homology of NEMP3 with DPP3 (DPP III, EC3.4.14.4), known as cytosolic dipeptidylaminopeptidase. We isolated DPP3 from rat and bovine liver and brain by the procedures used for this purpose by other authors. The effect of DPP3 on test peptides is the same as that of NEMP3. In particular, all DPP3 samples delete the tripeptide (AKF) from the C-end of the test peptide blocked at the N-end. The data obtained show that NEMP3 and DPP3 are the same protein (enzyme). Thus, DPP3 has two exopeptidase activities: the previously known activity of dipeptidylaminopeptidase and the activity of tripeptidylcarboxypeptidase discovered in this study. Another discovery is the extracellular activity of DPP 3 in the mammalian brain near synapses, which controls neuropeptides. DPP3 is involved in various processes, but in many cases its role remains to be clarified. The results obtained in this study will be useful for solving these questions.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases , Neuropeptídeos , Animais , Bovinos , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Metaloproteases/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Ratos
2.
J Proteome Res ; 18(12): 4206-4214, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31599598

RESUMO

This manuscript collects all the efforts of the Russian Consortium, bottlenecks revealed in the course of the C-HPP realization, and ways of their overcoming. One of the main bottlenecks in the C-HPP is the insufficient sensitivity of proteomic technologies, hampering the detection of low- and ultralow-copy number proteins forming the "dark part" of the human proteome. In the frame of MP-Challenge, to increase proteome coverage we suggest an experimental workflow based on a combination of shotgun technology and selected reaction monitoring with two-dimensional alkaline fractionation. Further, to detect proteins that cannot be identified by such technologies, nanotechnologies such as combined atomic force microscopy with molecular fishing and/or nanowire detection may be useful. These technologies provide a powerful tool for single molecule analysis, by analogy with nanopore sequencing during genome analysis. To systematically analyze the functional features of some proteins (CP50 Challenge), we created a mathematical model that predicts the number of proteins differing in amino acid sequence: proteoforms. According to our data, we should expect about 100 000 different proteoforms in the liver tissue and a little more in the HepG2 cell line. The variety of proteins forming the whole human proteome significantly exceeds these results due to post-translational modifications (PTMs). As PTMs determine the functional specificity of the protein, we propose using a combination of gene-centric transcriptome-proteomic analysis with preliminary fractionation by two-dimensional electrophoresis to identify chemically modified proteoforms. Despite the complexity of the proposed solutions, such integrative approaches could be fruitful for MP50 and CP50 Challenges in the framework of the C-HPP.


Assuntos
Proteínas/análise , Proteoma , Proteômica/métodos , Técnicas Biossensoriais , Eletroforese em Gel Bidimensional , Genoma Humano , Humanos , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Processamento de Proteína Pós-Traducional , Proteínas/isolamento & purificação , Federação Russa , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fluxo de Trabalho
3.
J Proteome Res ; 17(12): 4085-4096, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30238754

RESUMO

In the boundaries of the chromosome-centric Human Proteome Project (c-HPP) to obtain information about proteoforms coded by chromosome 18, several cell lines (HepG2, glioblastoma, LEH), normal liver, and plasma were analyzed. In our study, we have been using proteoform separation by two-dimensional electrophoresis (2DE) (a sectional analysis) and a semivirtual 2DE with following shotgun mass spectrometry using LC-ESI-MS/MS. Previously, we published a first draft of this research, where only HepG2 cells were tested. Here, we present the next step using more detailed analysis and more samples. Altogether, confident (2 significant sequences minimum) information about proteoforms of 117 isoforms coded by 104 genes of chromosome 18 was obtained. The 3D-graphs showing distribution of different proteoforms from the same gene in the 2D map were generated. Additionally, a semivirtual 2DE approach has allowed for detecting more proteoforms and estimating their pI more precisely. Data are available via ProteomeXchange with identifier PXD010142.


Assuntos
Cromossomos Humanos Par 18/química , Eletroforese em Gel Bidimensional/métodos , Isoformas de Proteínas/análise , Proteoma/análise , Linhagem Celular , Cromatografia Líquida , Simulação por Computador , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem
4.
J Proteome Res ; 15(2): 525-30, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26667816

RESUMO

To obtain more information about human proteome, especially about proteoforms (protein species) coded by 18th chromosome, we separated proteins from human cancer cell line (HepG2) by two-dimensional gel electrophoresis (2DE). Initially, proteins in major spots were identified by MALDI-MS peptide mass fingerprinting. According to parameters (pI/Mw) of identified proteins the gel was calibrated. Using this calibrated gel, a virtual 2D map of proteoforms coded by Chromosome 18 was constructed. Next, the produced gel was divided into 96 sections with determined coordinates. Each section was cut, shredded, and treated by trypsin according to mass-spectrometry protocol. After protein identification by shotgun mass spectrometry using ESI LC-MS/MS, a list of 20 462 proteoforms (product of 3774 genes) was generated. Among them, 165 proteoforms are representing 39 genes of 18th chromosome. The 3D graphs showing the distribution of different proteoforms from the same gene in 2D map were generated. This is a first step in creation of 2DE-based knowledge database of proteins coded by 18th chromosome.


Assuntos
Cromossomos Humanos Par 18 , Eletroforese em Gel Bidimensional/métodos , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida , Células Hep G2 , Humanos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Tripsina/metabolismo
5.
Electrophoresis ; 37(2): 302-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26454001

RESUMO

Virtual and experimental 2DE coupled with ESI LC-MS/MS was introduced to obtain better representation of the information about human proteome. The proteins from HEPG2 cells and human blood plasma were run by 2DE. After staining and protein spot identification by MALDI-TOF MS, the protein maps were generated. The experimental physicochemical parameters (pI/Mw) of the proteoforms further detected by ESI LC-MS/MS in these spots were obtained. Next, the theoretical pI and Mw of identified proteins were calculated using program Compute pI/Mw (http://web.expasy.org/compute_pi/pi_tool-doc.html). Accordingly, the relationship between theoretical and experimental parameters was analyzed, and the correlation plots were built. Additionally, virtual/experimental information about different protein species/proteoforms from the same genes was extracted. As it was revealed from the plots, the major proteoforms detected in HepG2 cell line have pI/Mw parameters similar to theoretical values. In opposite, the minor protein species have mainly very different from theoretical pI and Mw parameters. A similar situation was observed in plasma in much higher degree. It means that minor protein species are heavily modified in cell and even more in plasma proteome.


Assuntos
Proteínas Sanguíneas/análise , Proteoma/análise , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Células Hep G2 , Humanos , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
6.
Electrophoresis ; 35(6): 895-900, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24259369

RESUMO

Insufficient sensitivity of methods for detection of proteins at a single molecule level does not yet allow obtaining the whole image of human proteome. But to go further, we need at least to know the proteome size, or how many different protein species compose this proteome. This is the task that could be at least partially realized by the method described in this article. The approach used in our study is based on detection of protein spots in 2DE after staining by protein dyes with various sensitivities. As the different protein spots contain different protein species, counting the spots opens a way for estimation of number of protein species. The function representing the dependence of the number of protein spots on sensitivity or LOD of protein dyes was generated. And extrapolation of this function curve to theoretical point of the maximum sensitivity (detection of a single smallest polypeptide) allowed to counting the number of different molecules (polypeptide species) at the concentration level of a single polypeptide per proteome. Using this approach, it was estimated that the minimal numbers of protein species for model objects, Escherichia coli and Pirococcus furiosus, are 6200 and 3400, respectively. We expect a single human cell (HepG2) to contain minimum 70 000 protein species.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Histocitoquímica/métodos , Proteoma/análise , Proteômica/métodos , Escherichia coli/citologia , Células Hep G2 , Humanos , Limite de Detecção , Modelos Lineares , Proteoma/química , Proteoma/classificação
7.
J Proteome Res ; 12(1): 123-34, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23256950

RESUMO

The final goal of the Russian part of the Chromosome-centric Human Proteome Project (C-HPP) was established as the analysis of the chromosome 18 (Chr 18) protein complement in plasma, liver tissue and HepG2 cells with the sensitivity of 10(-18) M. Using SRM, we have recently targeted 277 Chr 18 proteins in plasma, liver, and HepG2 cells. On the basis of the results of the survey, the SRM assays were drafted for 250 proteins: 41 proteins were found only in the liver tissue, 82 proteins were specifically detected in depleted plasma, and 127 proteins were mapped in both samples. The targeted analysis of HepG2 cells was carried out for 49 proteins; 41 of them were successfully registered using ordinary SRM and 5 additional proteins were registered using a combination of irreversible binding of proteins on CN-Br Sepharose 4B with SRM. Transcriptome profiling of HepG2 cells performed by RNAseq and RT-PCR has shown a significant correlation (r = 0.78) for 42 gene transcripts. A pilot affinity-based interactome analysis was performed for cytochrome b5 using analytical and preparative optical biosensor fishing followed by MS analysis of the fished proteins. All of the data on the proteome complement of the Chr 18 have been integrated into our gene-centric knowledgebase ( www.kb18.ru ).


Assuntos
Cromossomos Humanos Par 18 , Bases de Dados de Proteínas , Proteoma/análise , Proteínas Sanguíneas/classificação , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 18/metabolismo , Expressão Gênica , Genoma Humano , Células Hep G2 , Humanos , Fígado/metabolismo , Espectrometria de Massas , Transcriptoma
8.
Anal Biochem ; 392(1): 90-5, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19482003

RESUMO

The analysis by electrophoresis followed by transfer to membranes and immunodetection (Western blot) is probably the most popular technique in protein study. Accordingly, it is a time- and money-consuming procedure. Here a protocol is described where immunodetection can be accomplished in 30 min. This approach also allows permanent staining of proteins by Coomassie Blue R on the membrane before immune staining with clear background and high sensitivity.


Assuntos
Western Blotting/métodos , Corantes/análise , Corantes de Rosanilina/análise , Western Blotting/economia , Linhagem Celular , Humanos , Fatores de Tempo
9.
FEBS Lett ; 581(25): 4917-20, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17900571

RESUMO

In order to clarify the status of PCNA in normal and transformed cells, we performed analysis of this protein by 2D-PAGE, Western blot and mass spectrometry. All the cell lines examined contained the major PCNA form (pI 4.57/30kDa), that is not post-translationally modified. In addition to the major form, two minor isoforms (pI 4.52/30kDa and pI 4.62/30kDa) were also detected in all the cell lines examined. However, the level of PCNA in cancer cells is 5-6 folds higher than those in primary and most of the immortalized cells. Taken together, the significant difference in PCNA status between cancer and normal cells is not at the post-translational modifications but in the overall levels of PCNA.


Assuntos
Neoplasias/metabolismo , Antígeno Nuclear de Célula em Proliferação/análise , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Neoplasias/química , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Isoformas de Proteínas/análise , Processamento de Proteína Pós-Traducional
10.
Protein Eng Des Sel ; 30(7): 477-488, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28651356

RESUMO

Sulfatases are a family of enzymes (sulfuric ester hydrolases, EC 3.1.6.-) that catalyze the hydrolysis of a wide array of sulfate esters. To date, despite the discovery of many sulfatase genes and the accumulation of data on numerous sulfated molecules, the number of characterized enzymes that are key players in sulfur metabolism remains extremely limited. While mammalian sulfatases are well studied due to their involvement in a wide range of normal and pathological biological processes, lower eukaryotic sulfatases, especially fungal sulfatases, have not been thoroughly investigated at the biochemical and structural level. In this paper, we describe the molecular cloning of Fusarium proliferatum sulfatase (F.p.Sulf-6His), its recombinant expression in Pichia pastoris as a soluble and active cytosolic enzyme and its detailed characterization. Gel filtration and native electrophoretic experiments showed that this recombinant enzyme exists as a tetramer in solution. The enzyme is thermo-sensitive, with an optimal temperature of 25°C. The optimal pH value for the hydrolysis of sulfate esters and stability of the enzyme was 6.0. Despite the absence of the post-translational modification of cysteine into Cα-formylglycine, the recombinant F.p.Sulf-6His has remarkably stable catalytic activity against p-nitrophenol sulfate, with kcat = 0.28 s-1 and Km = 2.45 mM, which indicates potential use in the desulfating processes. The currently proposed enzymatic mechanisms of sulfate ester hydrolysis do not explain the appearance of catalytic activity for the unmodified enzyme. According to the available models, the unmodified enzyme is not able to perform multiple catalytic acts; therefore, the enzymatic mechanism of sulfate esters hydrolysis remains to be fully elucidated.


Assuntos
Sequência de Aminoácidos/genética , Fusarium/enzimologia , Processamento de Proteína Pós-Traducional/genética , Sulfatases/genética , Sítios de Ligação , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Pichia/genética , Estrutura Quaternária de Proteína , Especificidade por Substrato , Sulfatases/biossíntese , Sulfatases/química
11.
Biochimie ; 132: 54-65, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27984201

RESUMO

Here, we report the biochemical characterization of a novel α-l-fucosidase with broad substrate specificity (FpFucA) isolated from the mycelial fungus Fusarium proliferatum LE1. Highly purified α-l-fucosidase was obtained from several chromatographic steps after growth in the presence of l-fucose. The purified α-l-fucosidase appeared to be a monomeric protein of 67 ± 1 kDa that was able to hydrolyze the synthetic substrate p-nitrophenyl α-l-fucopyranoside (pNPFuc), with Km = 1.1 ± 0.1 mM and kcat = 39.8 ± 1.8 s-1. l-fucose, 1-deoxyfuconojirimycin and tris(hydroxymethyl)aminomethane inhibited pNPFuc hydrolysis, with inhibition constants of 0.2 ± 0.05 mM, 7.1 ± 0.05 nM, and 12.2 ± 0.1 mM, respectively. We assumed that the enzyme belongs to subfamily A of the GH29 family (CAZy database) based on its ability to hydrolyze practically all fucose-containing oligosaccharides used in the study and the phylogenetic analysis. We found that this enzyme was a unique α-l-fucosidase that preferentially hydrolyzes the α-(1 â†’ 4)-L-fucosidic linkage present in α-L-fucobiosides with different types of linkages. As a retaining glycosidase, FpFucA is capable of catalyzing the transglycosylation reaction with alcohols (methanol, ethanol, and 1-propanol) and pNP-containing monosaccharides as acceptors. These features make the enzyme an important tool that can be used in the various modifications of valuable fucose-containing compounds.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Polissacarídeos/metabolismo , alfa-L-Fucosidase/metabolismo , Álcoois/metabolismo , Sequência de Aminoácidos , Dissacarídeos/metabolismo , Fucose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Fusarium/genética , Glicosídeos/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectrometria de Massas , Oligossacarídeos/metabolismo , Estereoisomerismo , Especificidade por Substrato , Temperatura , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/isolamento & purificação
14.
FEBS Lett ; 584(20): 4292-8, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20849852

RESUMO

Proliferating cell nuclear antigen (PCNA) is involved in a wide range of functions in the nucleus. However, a substantial amount of PCNA is also present in the cytoplasm, although their function is unknown. Here we show, through Far-Western blotting and mass spectrometry, that PCNA is associated with several cytoplasmic oncoproteins, including elongation factor, malate dehydrogenase, and peptidyl-prolyl isomerase. Surprisingly, PCNA is also associated with six glycolytic enzymes that are involved in the regulation of steps 4-9 in the glycolysis pathway.


Assuntos
Citoplasma/metabolismo , Enzimas/metabolismo , Glicólise , Antígeno Nuclear de Célula em Proliferação/metabolismo , Far-Western Blotting , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Imunofluorescência , Frutose-Bifosfato Aldolase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção
15.
Biochem Cell Biol ; 84(5): 669-76, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17167529

RESUMO

Its toroidal structure allows the proliferating cell nuclear antigen (PCNA) to wrap around and move along the DNA fiber, thereby dramatically increasing the processivity of DNA polymerization. PCNA is also involved in the regulation of a wide spectrum of other biological functions, including epigenetic inheritance. We have recently reported that mammalian PCNA forms a double trimer complex, which may be critically important in coordinating DNA replication and other cellular functions. To gain a better understanding of the stability of PCNA complexes, we characterized the physico-chemical properties of the PCNA structure by in vivo and in vitro approaches. The data obtained by gel filtration and nondenaturing gel electrophoresis of native PCNA molecules confirm our previous observations, obtained using formaldehyde crosslinking, in which PCNA exists in the cell as a double trimer. We have also found that optimal pH (pH 6.5-7.5) is critical for the stability of the PCNA structure. The presence or absence of ATP, dithiothreitol, and Mg2+ does not affect the stability of the PCNA trimer or double trimer. However, 0.02% SDS can effectively inhibit PCNA double trimer, but not single trimer, formation. Interestingly, glycerol and ammonium sulfate significantly destabilize both PCNA trimer and double trimer structures.


Assuntos
Antígeno Nuclear de Célula em Proliferação/química , Cromatografia em Gel , Dimerização , Eletroforese em Gel de Poliacrilamida , Humanos , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Estrutura Quaternária de Proteína , Células Tumorais Cultivadas
16.
J Biol Chem ; 280(14): 13888-94, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15805117

RESUMO

The diverse function of proliferating cell nuclear antigen (PCNA) may be regulated by interactions with different protein partners. Interestingly, the binding sites for all known PCNA-associating proteins are on the outer surface or the C termini ("front") sides of the PCNA trimer. Using cell extracts and purified human PCNA protein, we show here that two PCNA homotrimers form a back-to-back doublet. Mutation analysis suggests that the Arg-5 and Lys-110 residues on the PCNA back side are the contact points of the two homotrimers in the doublet. Furthermore, short synthetic peptides encompassing either Arg-5 or Lys-110 inhibit double trimer formation. We also found that a PCNA double trimer, but not a homotrimer alone, can simultaneously accommodate chromatin assembly factor-1 and polymerase delta. Together, our data supports a model that chromatin remodeling by chromatin assembly factor-1 (and, possibly, many other cellular activities) are tightly coupled with DNA replication (and repair) through a PCNA double trimer complex.


Assuntos
Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Quaternária de Proteína , Animais , Arginina/metabolismo , Células CHO , Cromatina/metabolismo , Cricetinae , DNA/metabolismo , Análise Mutacional de DNA , Humanos , Lisina/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
17.
J Biol Chem ; 279(19): 20194-9, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-14988403

RESUMO

The diverse function of proliferating cell nuclear antigen (PCNA) is thought to be due, in large part, to post-translational modifications. Here we show by high resolution two-dimensional PAGE analysis that there are three distinct PCNA isoforms that differ in their acetylation status. The moderately acetylated main (M) form was found in all of the subcellular compartments of cycling cells, whereas the highly acetylated acidic form was primarily found in the nucleoplasm, nuclear matrix, and chromatin. Interestingly, the deacetylated basic form was most pronounced in the nucleoplasm of cycling cells. The cells in G(0) and the cytoplasm of cycling cells contained primarily the M form only. Because p300 and histone deacetylase (HDAC1) were co-immunoprecipitated with PCNA, they are likely responsible for the acetylation and deacetylation of PCNA, respectively. We also found that deacetylation reduced the ability of PCNA to bind to DNA polymerases beta and delta. Taken together, our data support a model where the acidic and M forms participate in DNA replication, whereas the basic form is associated with the termination of DNA replication.


Assuntos
Antígeno Nuclear de Célula em Proliferação/química , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Western Blotting , Células CHO , Ciclo Celular , Núcleo Celular/metabolismo , Cromatina/química , Cricetinae , Citoplasma/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Replicação do DNA , Eletroforese em Gel Bidimensional , Immunoblotting , Fosforilação , Testes de Precipitina , Antígeno Nuclear de Célula em Proliferação/genética , Isoformas de Proteínas , Fase de Repouso do Ciclo Celular , Fase S , Frações Subcelulares/metabolismo , Fatores de Tempo
18.
Proteomics ; 3(6): 930-6, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12833516

RESUMO

The proliferating cell nuclear antigen (PCNA) is an essential component for eukaryotic chromosomal DNA replication and repair. PCNA forms a homotrimer ring, which may function as a DNA sliding clamp for DNA polymerases and, possibly, a docking station for other replication- and repair-related proteins. Several reports have suggested the existence of different PCNA isoforms. Here we confirm, using high resolution two-dimensional electrophoresis with narrow pH ranges, the existence of three PCNA isoforms in both Chinese hamster and human breast cancer cells. Among the three isoforms, M or main form is the dominant one throughout the cell cycle while the relative amounts of the minor components A (acidic) and B (basic) forms appear to vary during the cell cycle. We also observed that a specific pattern of PCNA proteolysis occurred during isoelectric focusing in spite of high urea (8 M) and detergent (2% 3-[(3-cholamidopropyl)dimethylamino]-1-propane sulfonate), which was largely inhibited by the proteosome inhibitor MG132 or boiling. Interestingly, the proteolysis pattern was mainly observed with samples isolated from cells in S and G2 phases. A similar but much lower level of PCNA proteolysis also occurred in vivo within the nuclei of the cells in S phase. Taken together, our data are consistent with the idea that the existence of the different isoforms and specific proteolysis of PCNA are relevant to its functions in vivo.


Assuntos
Neoplasias da Mama/metabolismo , Ciclo Celular , Antígeno Nuclear de Célula em Proliferação/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Apoptose/efeitos da radiação , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Eletroforese em Gel Bidimensional , Feminino , Raios gama/efeitos adversos , Humanos , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Antígeno Nuclear de Célula em Proliferação/efeitos da radiação , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA