Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 144: 104188, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32272217

RESUMO

The bactericidal activity of metal oxide nanoparticles (NPs) offers extensive opportunities in bioengineering and biomedicines. Bioengineered transition metals used in various forms against lethal microbes. In this study, Cadmium Oxide nanoparticles (CdO-NPs) were prepared through the co-precipitation method using fungal strain Penicillium oxalicum and cadmium acetate solution. The structure and elemental composition of the prepared NPs were determined by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Vis absorption spectroscopy, scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Antibacterial activity was assessed through well diffusion method against Staphylococcus aureus (S. aureus), Shigella dysenteriae (S. dysenteriae), and Pseudomonas aeruginosa (P. aeruginosa). In addition, reactive oxygen species (ROS), reducing sugars and protein leakage contribution was examined against selected strains. The XRD analysis proved that the synthesized CdO-NPs possess a crystalline structure with an average crystalline size of 40-80 nm. FTIR confirmed the presence of organic compounds on the particle surface, while UV showed stability of the particles. SEM and EDS confirmed that CdO-NPs were successfully prepared and spherical. The maximum zone of inhibition against S. dysenteriae and P. aeruginosa was found and showed a less optical density of 0.086 after 18 h. ROS, reducing sugar, and protein leakage assay showed a significant difference as compared to control. Based on the present study, it is recommended that microbial mediated synthesized nanoparticles can be used as biomedicines for the treatment of different types of bacterial infections.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Compostos de Cádmio/farmacologia , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Óxidos/farmacologia , Antibacterianos/química , Proteínas de Bactérias , Compostos de Cádmio/química , Testes de Sensibilidade Microbiana , Óxidos/química , Tamanho da Partícula , Penicillium , Difração de Raios X
2.
Medicina (Kaunas) ; 55(7)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336944

RESUMO

Background and Objectives: The current study focuses on an eco-friendly and cost-effective method of Ephedra procera C. A. Mey. mediated green synthesis of silver nanoparticles as potential cytotoxic, antimicrobial and anti-oxidant agents. Materials and Methods: Plant aqueous extracts were screened for Total Phenolic (TPC), Total Flavonoid contents (TFC), Total Antioxidant Capacity (TAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging potentials. Total reducing power estimated by potassium ferricyanide colorimetric assay. The biosynthesized E. procera nanoparticles (EpNPs) were characterized by UV-spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction and Scanning electron microscopy. EpNPs were evaluated for their antimicrobial, bio-compatibility and cytotoxic potentials. Results: Initial phytocheimcal analysis of plant aqueous extract revealed TFC of 20.7 ± 0.21 µg/mg extract and TPC of 117.01 ± 0.78 µg/mg extract. TAC, DPPH free radical scavenging and reducing power were 73.8 ± 0.32 µg/mg extract, 71.8 ± 0.73% and 105.4 ± 0.65 µg/mg extract respectively. The synthesized EpNPs were observed to possess high cytotoxicity against HepG2 cancer cell lines with IC50 (61.3 µg/mL) as compared aqueous extract with IC50 of (247 µg/mL). EpNPs were found to be biocompatible and have less effect on human erythrocytes. EpNPs exhibited significant antioxidant potentials and exhibited considerable activity against Escherichia coli and Bacillus subtilis with Minimum Inhibitory Concentration (MICs) of 11.12 µg/mL and 11.33 µg/mL respectively. Fungal species Aspergillus niger and Aspergillus flavus were found susceptible to EpNPs. Conclusions: Results of the current study revealed that EpNPs exhibited considerable antibacterial, antifungal and cytotoxic potentials. Aqueous extract possesses significant anti-radical properties and thus can be useful in free radicals induced degenerative disorders.


Assuntos
Ephedra/metabolismo , Compostos Fitoquímicos/análise , Prata/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Humanos , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/uso terapêutico , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Prata/análise
3.
Braz. J. Pharm. Sci. (Online) ; 58: e20989, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420394

RESUMO

Abstract Plants from genus Ephedra are commonly used by the Chinese people as folk medicine for treatment of various diseases. The current study was designed to explore the ethno-pharmacological based pharmacological potentials of Ephedra intermedia Schrenk & C.A. Mey. (E. intermedia). Plant aerial parts were extracted using ten solvent systems with increasing order of polarity. Samples were analyzed for total phenolic and flavonoid contents, HPLC-DAD analysis, antibacterial, antifungal, HepG2 cell line cytotoxicity, hemolysis and antioxidant potentials following standard procedures. Highest percent extract recovery was observed in Eth+WT (25.55 % w/w) solvent system. Flavonoid and phenolic contents were higher in chloroform and Met+WT fractions respectively. Considerable antibacterial activity was shown by Eth+Met extract against B. subtilis and K. pneumonia (MIC of 11.1μg/mL for each). Eth extract exhibited high antifungal activity against A. fumigates (15±0.31 mm DIZ). Met+WT extract showed significant cytotoxicity against HepG2 cell lines with IC50 of 13.51+0.69 μg/mL. Substantial free radical scavenging activity (74.9%) was observed for Met+Eth extract. In the current study, several solvent systems were used for more effective extraction of fractions and can be useful in the isolation of phytochemicals. Various fractions exhibited considerable antimicrobial, antioxidant and cytotoxic potentials. Biological potentials of E. intermedia signify its potential uses in microbial, cancer and degenerative disorders and thus warrant further detailed studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA