Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 73: 117005, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150343

RESUMO

Recently, the development of abiotic metal-mediated drug delivery has been significant growth in the fields of anticancer approach and biomedical application. However, the intrinsic toxicity of abiotic metal catalysts makes in vivo use difficult. Our group developed a system of cancer-targeting albumin-based artificial metalloenyzmes (ArMs) capable of performing localized drug synthesis and selective tagging therapy in vivo for cancer therapy. The toxicity of the system at higher concentrations was investigated in vitro and in vivo in the study to demonstrate its safety for potential application in clinical trials. In cell-based experiments, the study revealed that the cytotoxicity of metal catalysts anchored within the binding cavity of the cancer-targeting ArMs could be significantly reduced compared to free-in-solution metal catalysts. Moreover, the in vivo data demonstrated that the cancer-targeting ArMs did not cause considerable damage in organs or change in the hematological parameters in a single-dose (160 mg/Kg) toxicity study in rats. Therefore, the system is safe, highlighting that it could be used in clinical trials for cancer treatment.


Assuntos
Metaloproteínas , Neoplasias , Albuminas , Animais , Catálise , Metaloproteínas/metabolismo , Neoplasias/tratamento farmacológico , Ratos
2.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209074

RESUMO

Neoglycoconjugates mimicking natural compounds and possessing a variety of biological functions are very successful tools for researchers to understand the general mechanisms of many biological processes in living organisms. These substances are characterized by high biotolerance and specificity, with low toxicity. Due to the difficult isolation of individual glycoclusters from biological objects, special interest has been directed toward synthetic analogs. This review is mainly focused on the one-pot, double-click methodology (containing alkyne-azide click cycloaddition with the following 6π-azaelectrocyclization reactions) used in the synthesis of N-glycoconjugates. Homogeneous (including one type of biantennary N-glycan fragments) and heterogeneous (containing two to four types of biantennary N-glycan fragments) glycoclusters on albumin were synthesized via this strategy. A series of cell-, tissue- and animal-based experiments proved glycoclusters to be a very promising class of targeted delivery systems. Depending on the oligosaccharide units combined in the cluster, their amount, and arrangement relative to one another, conjugates can recognize various cells, including cancer cells, with high selectivity. These results open new perspectives for affected tissue visualization and treatment.


Assuntos
Glicoconjugados/síntese química , Polissacarídeos/química , Albumina Sérica Humana/química , Animais , Catálise , Técnicas de Química Sintética , Química Click , Glicoconjugados/química , Humanos , Lectinas/química , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
3.
Chem Sci ; 14(40): 11033-11039, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37860663

RESUMO

The direct synthesis of drugs in vivo enables drugs to treat diseases without causing side effects in healthy tissues. Transition-metal reactions have been widely explored for uncaging and synthesizing bioactive drugs in biological environments because of their remarkable reactivity. Nonetheless, it is difficult to develop a promising method to achieve in vivo drug synthesis because blood cells and metabolites deactivate transition-metal catalysts. We report that a robust albumin-based artificial metalloenzyme (ArM) with a low loading (1-5 mol%) can promote Ru-based olefin metathesis to synthesize molecular scaffolds and an antitumor drug in blood. The ArM retained its activity after soaking in blood for 24 h and provided the first example of catalytic olefin cross metathesis in blood. Furthermore, the cyclic-Arg-Gly-Asp (cRGD) peptide-functionalized ArM at lower dosages could still efficiently perform in vivo drug synthesis to inhibit the growth of implanted tumors in mice. Such a system can potentially construct therapeutic drugs in vivo for therapies without side effects.

4.
Nat Commun ; 13(1): 39, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013295

RESUMO

Considering the intrinsic toxicities of transition metals, their incorporation into drug therapies must operate at minimal amounts while ensuring adequate catalytic activity within complex biological systems. As a way to address this issue, this study investigates the design of synthetic prodrugs that are not only tuned to be harmless, but can be robustly transformed in vivo to reach therapeutically relevant levels. To accomplish this, retrosynthetic prodrug design highlights the potential of naphthylcombretastatin-based prodrugs, which form highly active cytostatic agents via sequential ring-closing metathesis and aromatization. Structural adjustments will also be done to improve aspects related to catalytic reactivity, intrinsic bioactivity, and hydrolytic stability. The developed prodrug therapy is found to possess excellent anticancer activities in cell-based assays. Furthermore, in vivo activation by intravenously administered glycosylated artificial metalloenzymes can also induce significant reduction of implanted tumor growth in mice.


Assuntos
Antineoplásicos/química , Biocatálise , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Animais , Antineoplásicos/farmacologia , Fenômenos Biológicos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Feminino , Humanos , Recém-Nascido , Doenças do Recém-Nascido , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Sci Adv ; 7(17)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33893089

RESUMO

This study presents the early framework of selective cell tagging (SeCT) therapy, which is the concept of preferentially labeling specific cells in vivo with chemical moieties that can elicit a therapeutic response. Using glycosylated artificial metalloenzyme (GArM)-based protein labeling, this study reports two separate functional strategies. In one approach, early tumor onset can be suppressed by tagging cancer cells in living mice with an integrin-blocking cyclic-Arg-Gly-Asp (cRGD) moiety, thereby disrupting cell adhesion onto the extracellular matrix. In another approach, tumor growth in mice can be reduced by tagging with a cytotoxic doxorubicin moiety. Subsequent cell death occurs following internalization and drug release. Overall, experiments have shown that mouse populations receiving the mixture of SeCT labeling reagents exhibited a significant delay/reduction in tumor onset and growth compared with controls. Highlighting its adaptability, this work represents a foundational step for further development of SeCT therapy and its potential therapeutic applications.

6.
Nat Commun ; 10(1): 5746, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848337

RESUMO

Enzyme biosensors are useful tools that can monitor rapid changes in metabolite levels in real-time. However, current approaches are largely constrained to metabolites within a limited chemical space. With the rising development of artificial metalloenzymes (ArM), a unique opportunity exists to design biosensors from the ground-up for metabolites that are difficult to detect using current technologies. Here we present the design and development of the ArM ethylene probe (AEP), where an albumin scaffold is used to solubilize and protect a quenched ruthenium catalyst. In the presence of the phytohormone ethylene, cross metathesis can occur to produce fluorescence. The probe can be used to detect both exogenous- and endogenous-induced changes to ethylene biosynthesis in fruits and leaves. Overall, this work represents an example of an ArM biosensor, designed specifically for the spatial and temporal detection of a biological metabolite previously not accessible using enzyme biosensors.


Assuntos
Materiais Biomiméticos/síntese química , Técnicas Biossensoriais/instrumentação , Etilenos/análise , Metaloproteínas/metabolismo , Reguladores de Crescimento de Plantas/análise , Actinidia/metabolismo , Arabidopsis/metabolismo , Catálise , Técnicas de Química Sintética/métodos , Enzimas/síntese química , Enzimas/metabolismo , Etilenos/metabolismo , Fluorescência , Frutas/metabolismo , Gases/análise , Gases/metabolismo , Metaloproteínas/síntese química , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/química , Rutênio/química , Albumina Sérica Humana/síntese química , Albumina Sérica Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA