Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiat Environ Biophys ; 55(1): 31-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26708100

RESUMO

The biological phenomena observed at low doses of ionizing radiation (adaptive response, bystander effects, genomic instability, etc.) are still not well understood. While at high irradiation doses, cellular death may be directly linked to DNA damage, at low doses, other cellular structures may be involved in what are known as non-(DNA)-targeted effects. Mitochondria, in particular, may play a crucial role through their participation in a signaling network involving oxygen/nitrogen radical species. According to the size of the implicated organelles, the fluctuations in the energy deposited into these target structures may impact considerably the response of cells to low doses of ionizing irradiation. Based on a recent simulation of these fluctuations, a theoretical framework was established to have further insight into cell responses to low doses of photon irradiation, namely the triggering of radioresistance mechanisms by energy deposition into specific targets. Three versions of a model are considered depending on the target size and on the number of targets that need to be activated by energy deposition to trigger radioresistance mechanisms. These model versions are applied to the fraction of radiation-induced chromosomal aberrations measured at low doses in human carcinoma cells (CAL51). For this cell line, it was found in the present study that the mechanisms of radioresistance could not be triggered by the activation of a single small target (nanometric size, 100 nm), but could instead be triggered by the activation of a large target (micrometric, 10 µm) or by the activation of a great number of small targets. The mitochondria network, viewed either as a large target or as a set of small units, might be concerned by these low-dose effects.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Modelos Biológicos , Fótons , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Humanos
2.
Radiat Environ Biophys ; 55(1): 19-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26590033

RESUMO

Intra- and inter-individual variability is a well-known aspect of biological responses of cells observed at low doses of radiation, whichever the phenomenon considered (adaptive response, bystander effects, genomic instability, etc.). There is growing evidence that low-dose phenomena are related to cell mechanisms other than DNA damage and misrepair, meaning that other cellular structures may play a crucial role. Therefore, in this study, a series of calculations at low doses was carried out to study the distribution of specific energies from different irradiation doses (3, 10 and 30 cGy) in targets of different sizes (0.1, 1 and 10 µm) corresponding to the dimensions of different cell structures. The results obtained show a strong dependence of the probability distributions of specific energies on the target size: targets with dimensions comparable to those of the cell show a Gaussian-like distribution, whereas very small targets are very likely to not be hit. A statistical analysis showed that the level of fluctuations in the fraction of aberrant cells is only related to the fraction of aberrant cells and the number of irradiated cells, regardless of, for instance, the heterogeneity in cell response.


Assuntos
Células/efeitos da radiação , Modelos Biológicos , Fótons , Células/citologia , Relação Dose-Resposta à Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA