Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Evol Biol ; 11: 208, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21756361

RESUMO

BACKGROUND: Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. RESULTS: We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. CONCLUSIONS: These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.


Assuntos
Cordados/classificação , Cordados/genética , Evolução Molecular , Variação Genética , Histonas/genética , Sequência de Aminoácidos , Animais , Feminino , Histonas/química , Masculino , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
2.
Mol Metab ; 24: 120-138, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30833218

RESUMO

OBJECTIVE: Dopamine neurons in the Substantia nigra (SN) play crucial roles in control of voluntary movement. Extensive degeneration of this neuronal population is the cause of Parkinson's disease (PD). Many factors have been linked to SN DA neuronal survival, including neuronal pacemaker activity (responsible for maintaining basal firing and DA tone) and mitochondrial function. Dln-101, a naturally occurring splice variant of the human ghrelin gene, targets the ghrelin receptor (GHSR) present in the SN DA cells. Ghrelin activation of GHSR has been shown to protect SN DA neurons against 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. We decided to compare the actions of Dln-101 with ghrelin and identify the mechanisms associated with neuronal survival. METHODS: Histologial, biochemical, and behavioral parameters were used to evaluate neuroprotection. Inflammation and redox balance of SN DA cells were evaluated using histologial and real-time PCR analysis. Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology was used to modulate SN DA neuron electrical activity and associated survival. Mitochondrial dynamics in SN DA cells was evaluated using electron microscopy data. RESULTS: Here, we report that the human isoform displays an equivalent neuroprotective factor. However, while exogenous administration of mouse ghrelin electrically activates SN DA neurons increasing dopamine output, as well as locomotion, the human isoform significantly suppressed dopamine output, with an associated decrease in animal motor behavior. Investigating the mechanisms by which GHSR mediates neuroprotection, we found that dopamine cell-selective control of electrical activity is neither sufficient nor necessary to promote SN DA neuron survival, including that associated with GHSR activation. We found that Dln101 pre-treatment diminished MPTP-induced mitochondrial aberrations in SN DA neurons and that the effect of Dln101 to protect dopamine cells was dependent on mitofusin 2, a protein involved in the process of mitochondrial fusion and tethering of the mitochondria to the endoplasmic reticulum. CONCLUSIONS: Taken together, these observations unmasked a complex role of GHSR in dopamine neuronal protection independent on electric activity of these cells and revealed a crucial role for mitochondrial dynamics in some aspects of this process.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Grelina/química , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Substância Negra/efeitos dos fármacos , Potenciais de Ação , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Camundongos , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Receptores de Grelina/metabolismo , Substância Negra/citologia
3.
Nat Rev Endocrinol ; 10(11): 650-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200564

RESUMO

The ability of an organism to convert organic molecules from the environment into energy is essential for the development of cellular structures, cell differentiation and growth. Mitochondria have a fundamental role in regulating metabolic pathways, and tight control of mitochondrial functions and dynamics is critical to maintaining adequate energy balance. In complex organisms, such as mammals, it is also essential that the metabolic demands of various tissues are coordinated to ensure that the energy needs of the whole body are effectively met. Within the arcuate nucleus of the hypothalamus, the NPY-AgRP and POMC neurons have a crucial role in orchestrating the regulation of hunger and satiety. Emerging findings from animal studies have revealed an important function for mitochondrial dynamics within these two neuronal populations, which facilitates the correct adaptive responses of the whole body to changes in the metabolic milieu. The main proteins implicated in these studies are the mitofusins, Mfn1 and Mfn2, which are regulators of mitochondrial dynamics. In this Review, we provide an overview of the mechanisms by which mitochondria are involved in the central regulation of energy balance and discuss the implications of mitochondrial dysfunction for metabolic disorders.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Energia , Metabolismo Energético , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neurônios/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Neurônios/fisiologia , Obesidade/metabolismo
4.
PLoS One ; 9(2): e88810, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533152

RESUMO

During brain development, neural stem cells (NSCs) receive on-or-off signals important for regulating their amplification and reaching adequate neuron density. However, how a coordinated regulation of intracellular pathways and genetic programs is achieved has remained elusive. Here, we found that the embryonic (e) CSF contains 10¹² nanoparticles/ml (77 nm diameter), some of which were identified as exosome nanovesicles that contain evolutionarily conserved molecules important for coordinating intracellular pathways. eCSF nanovesicles collected from rodent and human embryos encapsulate protein and microRNA components of the insulin-like growth factor (IGF) signaling pathway. Supplementation of eCSF nanovesicles to a mixed culture containing eNSCs activated the IGF-mammalian target of rapamycin complex 1 (mTORC1) pathway in eNSCs and expanded the pool of proliferative eNSCs. These data show that the eCSF serves as a medium for the distribution of nanovesicles, including exosomes, and the coordinated transfer of evolutionary conserved molecules that regulate eNSC amplification during corticogenesis.


Assuntos
Líquido Cefalorraquidiano/citologia , Embrião de Mamíferos/citologia , Evolução Molecular , Nanopartículas , Células-Tronco Neurais/citologia , Animais , Proliferação de Células , Exossomos/metabolismo , Feminino , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Complexos Multiproteicos/metabolismo , Gravidez , Ratos , Transdução de Sinais , Somatomedinas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
PLoS One ; 7(6): e40133, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768241

RESUMO

Local protein synthesis in dendrites contributes to the synaptic modifications underlying learning and memory. The mRNA encoding the α subunit of the calcium/calmodulin dependent Kinase II (CaMKIIα) is dendritically localized and locally translated. A role for CaMKIIα local translation in hippocampus-dependent memory has been demonstrated in mice with disrupted CaMKIIα dendritic translation, through deletion of CaMKIIα 3'UTR. We studied the dendritic localization and local translation of CaMKIIα in the mouse olfactory bulb (OB), the first relay of the olfactory pathway, which exhibits a high level of plasticity in response to olfactory experience. CaMKIIα is expressed by granule cells (GCs) of the OB. Through in situ hybridization and synaptosome preparation, we show that CaMKIIα mRNA is transported in GC dendrites, synaptically localized and might be locally translated at GC synapses. Increases in the synaptic localization of CaMKIIα mRNA and protein in response to brief exposure to new odors demonstrate that they are activity-dependent processes. The activity-induced dendritic transport of CaMKIIα mRNA can be inhibited by an NMDA receptor antagonist and mimicked by an NMDA receptor agonist. Finally, in mice devoid of CaMKIIα 3'UTR, the dendritic localization of CaMKIIα mRNA is disrupted in the OB and olfactory associative learning is severely impaired. Our studies thus reveal a new functional modality for CaMKIIα local translation, as an essential determinant of olfactory plasticity.


Assuntos
Dendritos/enzimologia , Bulbo Olfatório/enzimologia , Biossíntese de Proteínas , Animais , Aprendizagem por Associação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dendritos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/citologia , Bulbo Olfatório/ultraestrutura , Transporte Proteico , RNA Mensageiro , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/enzimologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA