Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Immunol ; 230: 108815, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339843

RESUMO

Traumatic Brain Injury (TBI) is the most prevalent of all head injuries. Microglia play an essential role in homeostasis and diseases of the central nervous system. We hypothesize that microglia may play a beneficial or detrimental role in TBI depending on their state of activation and duration. In this study, we evaluated whether TBI results in a spatiotemporal change in microglia phenotype and whether it affects sensory-motor or learning and memory functions in male C57BL/6 mice. We used a panel of neurological and behavioral tests and a multi-color flow cytometry-based data analysis followed by unsupervised clustering to evaluate isolated microglia from injured brain tissue. We characterized several microglial phenotypes and their association with cognitive deficits. TBI results in a spatiotemporal increase in activated microglia that correlated negatively with spatial learning and memory at 35 days post-injury. These observations could define therapeutic windows and accelerate translational research to improve patient outcomes.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Microglia/fisiologia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/psicologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Citometria de Fluxo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/classificação , Microglia/patologia , Modelos Neurológicos , Modelos Psicológicos , Dinâmica não Linear , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia , Análise Espaço-Temporal , Pesquisa Translacional Biomédica
2.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208666

RESUMO

Post-traumatic epilepsy (PTE) and neurocognitive deficits are devastating sequelae of head injuries that are common in adolescents. Investigating desperately needed treatments is hindered by the difficulties in inducing PTE in rodents and the lack of established immature rat models of pediatric PTE. Hemorrhage is a significant risk factor for PTE, but compared to humans, rats are less prone to bleeding because of their rapid blood coagulation system. In this study, we promoted bleeding in the controlled cortical impact (CCI) closed-head injury model with a 20 min pre-impact 600 IU/kg intraperitoneal heparin injection in postnatal day 35 (P35) periadolescent rats, given the preponderance of such injuries in this age group. Temporo-parietal CCI was performed post-heparin (HTBI group) or post-saline (TBI group). Controls were subjected to sham procedures following heparin or saline administration. Continuous long-term EEG monitoring was performed for 3 months post-CCI. Sensorimotor testing, the Morris water maze, and a modified active avoidance test were conducted between P80 and P100. Glial fibrillary acidic protein (GFAP) levels and neuronal damage were also assessed. Compared to TBI rats, HTBI rats had persistently higher EEG spiking and increased hippocampal GFAP levels (p < 0.05). No sensorimotor deficits were detected in any group. Compared to controls, both HTBI and TBI groups had a long-term hippocampal neuronal loss (p < 0.05), as well as contextual and visuospatial learning deficits (p < 0.05). The hippocampal astrogliosis and EEG spiking detected in all rats subjected to our hemorrhage-promoting procedure suggest the emergence of hyperexcitable networks and pave the way to a periadolescent PTE rat model.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Suscetibilidade a Doenças , Hemorragia/etiologia , Fatores Etários , Animais , Biomarcadores , Biópsia , Lesões Encefálicas Traumáticas/diagnóstico , Modelos Animais de Doenças , Eletroencefalografia , Proteína Glial Fibrilar Ácida/metabolismo , Hemorragia/diagnóstico , Imuno-Histoquímica , Aprendizagem em Labirinto , Neurônios/metabolismo , Ratos
3.
Neurochem Int ; 154: 105301, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121011

RESUMO

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability worldwide. Aspirin (ASA) and clopidogrel (CLOP) are antiplatelet agents that inhibit platelet aggregation. They are implicated in worsening the intracerebral haemorrhage (ICH) risk post-TBI. However, antiplatelet drugs may also exert a neuroprotective effect post-injury. We determined the impact of ASA and CLOP treatment, alone or in combination, on ICH and brain damage in an experimental rat TBI model. We assessed changes in platelet aggregation and measured serum thromboxane by enzyme immune assay. We also explored a panel of brain damage and apoptosis biomarkers by immunoblotting. Rats were treated with ASA and/or CLOP for 48 h prior to TBI and sacrificed 48 h post-injury. In rats treated with antiplatelet agents prior to TBI, platelet aggregation was completely inhibited, and serum thromboxane was significantly decreased, compared to the TBI group without treatment. TBI increases UCHL-1 and GFAP, but decreases hexokinase expression compared to the non-injured controls. All groups treated with antiplatelet drugs prior to TBI had decreased UCH-L1 and GFAP serum levels compared to the TBI untreated group. Furthermore, the ASA and CLOP single treatments increased the hexokinase serum levels. We confirmed that αII-spectrin cleavage increased post-TBI, with the highest cleavage detected in CLOP-treated rats. Aspirin and/or CLOP treatment prior to TBI is a double-edged sword that exerts a dual effect post-injury. On one hand, ASA and CLOP single treatments increase the post-TBI ICH risk, with a further detrimental effect from the ASA + CLOP treatment. On the other hand, ASA and/or CLOP treatments are neuroprotective and result in a favourable profile of TBI injury markers. The ICH risk and the neuroprotection benefits from antiplatelet therapy should be weighed against each other to ameliorate the management of TBI patients.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Clopidogrel/farmacologia , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Ratos
4.
Exp Neurol ; 351: 113987, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35065054

RESUMO

Traumatic brain injury (TBI) is a major cause of disability and death. Mild TBI (mTBI) constitutes ~75% of all TBI cases. Repeated exposure to mTBI (rmTBI), leads to the exacerbation of the symptoms compared to single mTBI. To date, there is no FDA-approved drug for TBI or rmTBI. This research aims to investigate possible rmTBI neurotherapy by targeting TBI pathology-related mechanisms. Oxidative stress is partly responsible for TBI/rmTBI neuropathologic outcomes. Thus, targeting oxidative stress may ameliorate TBI/rmTBI consequences. In this study, we hypothesized that mitoquinone (MitoQ), a mitochondria-targeted antioxidant, would ameliorate TBI/rmTBI associated pathologic features by mitigating rmTBI-induced oxidative stress. To model rmTBI, C57BL/6 mice were subjected to three concussive head injuries. MitoQ (5 mg/kg) was administered intraperitoneally to rmTBI+MitoQ mice twice per week over one month. Behavioral and cognitive outcomes were assessed, 30 days following the first head injury, using a battery of behavioral tests. Immunofluorescence was used to assess neuroinflammation and neuronal integrity. Also, qRT-PCR was used to evaluate the expression levels of antioxidant enzymes. Our findings indicated that MitoQ alleviated fine motor function and learning impairments caused by rmTBI. Mechanistically, MitoQ reduced astrocytosis, microgliosis, dendritic and axonal shearing, and increased the expression of antioxidant enzymes. MitoQ administration following rmTBI may represent an efficient approach to ameliorate rmTBI neurological and cellular outcomes with no observable side effects.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Concussão Encefálica/complicações , Concussão Encefálica/tratamento farmacológico , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Suplementos Nutricionais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Compostos Organofosforados , Estresse Oxidativo , Ubiquinona/análogos & derivados
5.
Curr Med Chem ; 28(12): 2369-2391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32787753

RESUMO

Edaravone is a potent free-radical scavenger that has been in the market for more than 30 years. It was originally developed in Japan to treat strokes and has been used there since 2001. Aside from its anti-oxidative effects, edaravone demonstrated beneficial effects on proinflammatory responses, nitric oxide production, and apoptotic cell death. Interestingly, edaravone has shown neuroprotective effects in several animal models of diseases other than stroke. In particular, edaravone administration was found to be effective in halting amyotrophic lateral sclerosis (ALS) progression during the early stages. Accordingly, after its success in Phase III clinical studies, edaravone has been approved by the FDA as a treatment for ALS patients. Considering its promises in neurological disorders and its safety in patients, edaravone is a drug of interest that can be repurposed for traumatic brain injury (TBI) treatment. Drug repurposing is a novel approach in drug development that identifies drugs for purposes other than their original indication. This review presents the biochemical properties of edaravone along with its effects on several neurological disorders in the hope that it can be adopted for treating TBI patients.


Assuntos
Esclerose Lateral Amiotrófica , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Preparações Farmacêuticas , Animais , Reposicionamento de Medicamentos , Edaravone , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Fármacos Neuroprotetores/uso terapêutico
6.
Front Pharmacol ; 12: 743059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867349

RESUMO

Microglia, the resident phagocytes of the central nervous system and one of the key modulators of the innate immune system, have been shown to play a major role in brain insults. Upon activation in response to neuroinflammation, microglia promote the release of inflammatory mediators as well as promote phagocytosis. Plasma prekallikrein (PKall) has been recently implicated as a mediator of neuroinflammation; nevertheless, its role in mediating microglial activation has not been investigated yet. In the current study, we evaluate the mechanisms through which PKall contributes to microglial activation and release of inflammatory cytokines assessing PKall-related receptors and their dynamics. Murine N9-microglial cells were exposed to PKall (2.5 ng/ml), lipopolysaccharide (100 ng/ml), bradykinin (BK, 0.1 µM), and neuronal cell debris (16.5 µg protein/ml). Gene expression of bradykinin 2 receptor (B2KR), protease-activated receptor 2 (PAR-2), along with cytokines and fibrotic mediators were studied. Bioinformatic analysis was conducted to correlate altered protein changes with microglial activation. To assess receptor dynamics, HOE-140 (1 µM) and GB-83 (2 µM) were used to antagonize the B2KR and PAR-2 receptors, respectively. Also, the role of autophagy in modulating microglial response was evaluated. Data from our work indicate that PKall, LPS, BK, and neuronal cell debris resulted in the activation of microglia and enhanced expression/secretion of inflammatory mediators. Elevated increase in inflammatory mediators was attenuated in the presence of HOE-140 and GB-83, implicating the engagement of these receptors in the activation process coupled with an increase in the expression of B2KR and PAR-2. Finally, the inhibition of autophagy significantly enhanced the release of the cytokine IL-6 which were validated via bioinformatics analysis demonstrating the role of PKall in systematic and brain inflammatory processes. Taken together, we demonstrated that PKall can modulate microglial activation via the engagement of PAR-2 and B2KR where PKall acts as a neuromodulator of inflammatory processes.

7.
Antioxidants (Basel) ; 9(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019512

RESUMO

Traumatic brain injury (TBI) is a major health concern worldwide and is classified based on severity into mild, moderate, and severe. The mechanical injury in TBI leads to a metabolic and ionic imbalance, which eventually leads to excessive production of reactive oxygen species (ROS) and a state of oxidative stress. To date, no drug has been approved by the food and drug administration (FDA) for the treatment of TBI. Nevertheless, it is thought that targeting the pathology mechanisms would alleviate the consequences of TBI. For that purpose, antioxidants have been considered as treatment options in TBI and were shown to have a neuroprotective effect. In this review, we will discuss oxidative stress in TBI, the history of antioxidant utilization in the treatment of TBI, and we will focus on two novel antioxidants, mitoquinone (MitoQ) and edaravone. MitoQ can cross the blood brain barrier and cellular membranes to accumulate in the mitochondria and is thought to activate the Nrf2/ARE pathway leading to an increase in the expression of antioxidant enzymes. Edaravone is a free radical scavenger that leads to the mitigation of damage resulting from oxidative stress with a possible association to the activation of the Nrf2/ARE pathway as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA