RESUMO
IKZF1 (IKAROS) is essential for normal lymphopoiesis in both humans and mice. Previous Ikzf1 mouse models have demonstrated the dual role for IKZF1 in both B and T cell development and have indicated differential requirements of each zinc finger. Furthermore, mutations in IKZF1 are known to cause common variable immunodeficiency in patients characterized by a loss of B cells and reduced Ab production. Through N-ethyl-N-nitrosourea mutagenesis, we have discovered a novel Ikzf1 mutant mouse with a missense mutation (L132P) in zinc finger 1 (ZF1) located in the DNA binding domain. Unlike other previously reported murine Ikzf1 mutations, this L132P point mutation (Ikzf1L132P ) conserves overall protein expression and has a B cell-specific phenotype with no effect on T cell development, indicating that ZF1 is not required for T cells. Mice have reduced Ab responses to immunization and show a progressive loss of serum Igs compared with wild-type littermates. IKZF1L132P overexpressed in NIH3T3 or HEK293T cells failed to localize to pericentromeric heterochromatin and bind target DNA sequences. Coexpression of wild-type and mutant IKZF1, however, allows for localization to pericentromeric heterochromatin and binding to DNA indicating a haploinsufficient mechanism of action for IKZF1L132P Furthermore, Ikzf1+/L132P mice have late onset defective Ig production, similar to what is observed in common variable immunodeficiency patients. RNA sequencing revealed a total loss of Hsf1 expression in follicular B cells, suggesting a possible functional link for the humoral immune response defects observed in Ikzf1L132P/L132P mice.
Assuntos
Linfócitos B/imunologia , Imunodeficiência de Variável Comum/genética , Fator de Transcrição Ikaros/genética , Mutação Puntual/genética , Animais , Formação de Anticorpos , Células HEK293 , Haploinsuficiência , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Fator de Transcrição Ikaros/metabolismo , Imunoglobulinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células NIH 3T3RESUMO
CD4(+) T cells are important effectors of inflammation and tissue destruction in many diseases of immune dysregulation. As memory T cells develop early during the preclinical stages of autoimmune and inflammatory diseases, immunotherapeutic approaches to treatment of these diseases, once established, must include the means to terminate memory T-cell responses. Traditionally, it has been considered that, due to their terminally differentiated nature, memory T cells are resistant to tolerance induction, although emerging evidence indicates that some immunotherapeutic approaches can terminate memory T-cell responses. Here, we demonstrate that CD4(+) memory T-cell responses can be terminated when cognate antigen is transgenically expressed in steady-state DC. Transfer of in-vitro-generated CD4(+) memory T cells establishes, in nontransgenic recipients, a stable and readily recalled memory response to cognate antigen. In contrast, upon transfer to mice expressing cognate antigen targeted to DC, memory CD4(+) T cells undergo a phase of limited proliferation followed by substantial deletion, and recall responses are effectively silenced. This finding is important in understanding how to effectively apply immunotherapy to ongoing T-cell-mediated autoimmune and inflammatory diseases.
Assuntos
Células Apresentadoras de Antígenos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Memória Imunológica , Imunoterapia Adotiva , Transferência Adotiva , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Apoptose/imunologia , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular/imunologia , Células Cultivadas , Clonagem Molecular , Células Dendríticas/imunologia , Células Dendríticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/genética , Ovalbumina/imunologia , Ovalbumina/metabolismo , Receptores de Antígenos de Linfócitos T/genéticaRESUMO
The IAN (immune-associated nucleotide-binding protein) family is a family of functionally uncharacterized GTP-binding proteins expressed in vertebrate immune cells and in plant cells during antibacterial responses. Here we show that all eight IAN family genes encoded in a single cluster of mouse genome are predominantly expressed in lymphocytes, and that the expression of IAN1, IAN4, and IAN5 is significantly elevated upon thymic selection of T lymphocytes. Gain-of-function experiments show that the premature overexpression of IAN1 kills immature thymocytes, whereas short hairpin RNA-mediated loss-of-function studies show that IAN4 supports positive selection. The knockdown of IAN5 perturbs the optimal generation of CD4/CD8 double-positive thymocytes and reduces the survival of mature T lymphocytes. We also show evidence suggesting that IAN4 and IAN5 are associated with anti-apoptotic proteins Bcl-2 and Bcl-xL, whereas IAN1 is associated with pro-apoptotic Bax. Thus, the IAN family is a novel family of T cell-receptor-responsive proteins that critically regulate thymic development and survival of T lymphocytes and that potentially exert regulatory functions through the association with Bcl-2 family proteins.
Assuntos
Apoptose , Diferenciação Celular , Proteínas de Ligação ao GTP/classificação , Proteínas de Ligação ao GTP/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Sobrevivência Celular , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Genoma/genética , Humanos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Timo/citologia , Timo/metabolismoRESUMO
TCR ligation by the self-peptide-associated MHC molecules is essential for T cell development in the thymus, so that class II MHC-deficient mice do not generate CD4(+)CD8(-) T cells. The present results show that the administration of anti-TCR mAb into class II MHC-deficient mice restores the generation of CD4(+)CD8(-) T cells in vivo. The CD4 T cells were recovered in the thymus, peripheral blood, and the spleen, indicating that the anti-TCR treatment is sufficient for peripheral supply of newly generated CD4 T cells. Unlike peripheral CD4 T cells that disappeared within 5 wk after the treatment, CD4(+)CD8(-) thymocytes remained undiminished even after 5 wk, suggesting that CD4 T cells in the thymus are maintained separately from circulating CD4 T cells and even without class II MHC molecules. It was also found that the mass of medullary region in the thymus, which was reduced in class II MHC-deficient mice, was restored by the anti-TCR administration, suggesting that the medulla for CD4(+)CD8(-) thymocytes is formed independently of the medulla for CD4(-)CD8(+) thymocytes. These results indicate that in vivo anti-TCR treatment in class II MHC-deficient mice restores the generation of circulating CD4 T cells and optimal formation of the medulla in the thymus, suggesting that anti-TCR Ab may be useful for clinical treatment of class II MHC deficiencies.