Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Reprod Toxicol ; 124: 108551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280688

RESUMO

Gestational exposure to the anticonvulsant drug valproic acid (VPA) is associated with congenital malformations and neurodevelopmental disorders through its action as a histone deacetylase inhibitor. VPA can elicit placental toxicity and affect placental growth and development. The objective of this study was to evaluate the impact of maternal exposure to VPA on the mouse placenta following exposure on gestational day (GD) 13 since previous studies have shown that mice exposed at this time during gestation give birth to offspring with an autism spectrum disorder-like phenotype. We exposed CD-1 dams to a teratogenic dose (600 mg/kg) of VPA or saline on GD13 and assessed fetoplacental growth and development on GD18. We evaluated epigenetic modifications, including acetylated histone H4 (H4ac), methylated H3K4 (H3K4me2) using immunohistochemistry, and global DNA methylation in the placenta at 1, 3, and 24 h following maternal exposure on GD13. In utero exposure to VPA on GD13 significantly decreased placental weight and increased fetal resorptions. Moreover, VPA significantly increased the staining intensity of histone H4 acetylation and H3K4 di-methylation across the placenta at 1 and 3 h post maternal dose. Our results also demonstrate that VPA significantly decreased global DNA methylation levels in placental tissue. These results show that gestational exposure to VPA interferes with placental growth and elicits epigenetic modifications, which may play a vital role in VPA-induced developmental toxicity.


Assuntos
Transtorno do Espectro Autista , Ácido Valproico , Gravidez , Feminino , Camundongos , Animais , Ácido Valproico/toxicidade , Histonas/metabolismo , Placenta/metabolismo , Epigênese Genética
2.
Cannabis Cannabinoid Res ; 9(3): 766-780, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38364116

RESUMO

Introduction: Cannabis use is increasing among pregnant people, and cannabidiol (CBD), a constituent of cannabis, is often perceived as "natural" and "safe" as it is non-intoxicating. In utero, cannabis exposure is associated with negative health outcomes, including fetal growth restriction (FGR). The placenta supplies oxygen and nutrients to the fetus, and alterations in placental development can lead to FGR. While there has been some investigation into the effects of Δ9-THC, there has been limited investigation into the impacts of in utero gestational CBD exposure on the placenta. Methods: This study used histological and transcriptomic analysis of embryonic day (E)19.5 rat placentas from vehicle and CBD (3 mg/kg intraperitoneal injection) exposed pregnancies (E6.5-18.5). Results: The study revealed that pups from CBD-exposed pregnancies were 10% smaller, with the placentae displaying a decreased fetal blood space perimeter-to-area ratio. The transcriptomic analysis supported compromised angiogenesis and blood vessel formation with downregulated biological processes, including tube morphogenesis, angiogenesis, blood vessel morphogenesis, blood vessel development and vasculature development. Further, the CBD-exposed placentas displayed changed expression of glucose transporters (decreased GLUT1 and GR expression and increased GLUT3 expression). Transcriptomic analysis further revealed upregulated biological processes associated with metabolism. Finally, histological and transcriptomic analysis revealed altered cell populations within the placenta, specifically to syncytiotrophoblast layer II and endothelial cells. Conclusion: Together these results suggest that the structural changes in CDB-exposed placentae, including the altered expression of nutrient transporters and the changes to the placental fetal vasculature, may underlie the reduced fetal growth.


Assuntos
Canabidiol , Retardo do Crescimento Fetal , Placenta , Gravidez , Animais , Feminino , Placenta/efeitos dos fármacos , Placenta/metabolismo , Canabidiol/farmacologia , Canabidiol/toxicidade , Ratos , Retardo do Crescimento Fetal/induzido quimicamente , Desenvolvimento Fetal/efeitos dos fármacos , Ratos Sprague-Dawley , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo
3.
Cannabis Cannabinoid Res ; 9(3): 781-796, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358335

RESUMO

Introduction: Studies indicate that ∼7% of pregnant individuals in North America consume cannabis in pregnancy. Pre-clinical studies have established that maternal exposure to Δ9-tetrahydrocannabinol (THC; major psychoactive component in cannabis) leads to fetal growth restriction and impaired cardiac function in offspring. However, the effects of maternal exposure to cannabidiol (CBD; major non-euphoric constituent) on cardiac outcomes in offspring remain unknown. Therefore, our objective is to investigate the functional and underlying molecular impacts in the hearts of offspring exposed to CBD in pregnancy. Methods: Pregnant Wistar rats were exposed to either 3 or 30 mg/kg CBD or vehicle control i.p. daily from gestational day 6 to term. Echocardiography was used to assess cardiac function in male and female offspring at postnatal day (PND) 21. Furthermore, quantitative polymerase chain reaction (qPCR), immunoblotting, and bulk RNA-sequencing (RNA-seq) were performed on PND21 offspring hearts. Results: Despite no differences in the heart-to-body weight ratio, both doses of CBD led to reduced cardiac function exclusively in male offspring at 3 weeks of age. Underlying this, significant alterations in the expression of the endocannabinoid system (ECS; e.g., decreased cannabinoid receptor 2) were observed. In addition, bulk RNA-seq data demonstrated transcriptional pathways significantly enriched in mitochondrial function/metabolism as well as development. Conclusion: Collectively, we demonstrated for the first time that gestational exposure to CBD, a constituent perceived as safe, leads to early sex-specific postnatal cardiac deficits and alterations in the cardiac ECS in offspring.


Assuntos
Canabidiol , Coração , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Animais , Canabidiol/toxicidade , Canabidiol/farmacologia , Feminino , Gravidez , Masculino , Ratos , Coração/efeitos dos fármacos , Exposição Materna/efeitos adversos
4.
Placenta ; 135: 51-61, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36965349

RESUMO

Cannabis use during pregnancy is increasing. The improvement of pregnancy-related symptoms including morning sickness and management of mood and stress are among the most reported reasons for its use. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant cannabinoids found within the cannabis flower. The concentration of these components has drastically increased in the past 20 years. Additionally, many edibles contain only one cannabinoid and are marketed to achieve a specific goal, meaning there are an increasing number of pregnancies that are exposed to isolated cannabinoids. Both Δ9-THC and CBD cross the placenta and can impact the fetus directly, but the receptors through which cannabinoids act are also expressed throughout the placenta, suggesting that the effects of in-utero cannabinoid exposure may include indirect effects from the placenta. In-utero cannabis research focuses on short and long-term fetal health and development; however, these studies include little to no placenta analysis. Prenatal cannabinoid exposure is linked to small for gestational age and fetal growth-restricted babies. Compromised placental development is also associated with fetal growth restriction and the few studies (clinical and animal models) that included placental analysis, identify changes in placental vasculature and function in these cannabinoid-exposed pregnancies. In vitro studies further support cannabinoid impact on cell function in the different populations that comprise the placenta. In this article, we aim to summarize how phytocannabinoids can impact placental development and function. Specifically, the cannabinoids and their actions at the different receptors are described, with receptor localization throughout the human and murine placenta discussed. Findings from studies that included placental analysis and how cannabinoid signaling may modulate critical developmental processing including cell proliferation, angiogenesis and migration are described. Considering the current research, prenatal cannabinoid exposure may significantly impact placental development, and, as such, identifying windows of placental vulnerability for each cannabinoid will be critical to elucidate the etiology of fetal outcome studies.


Assuntos
Canabidiol , Canabinoides , Feminino , Humanos , Camundongos , Animais , Gravidez , Canabinoides/efeitos adversos , Dronabinol , Placenta , Transdução de Sinais , Retardo do Crescimento Fetal
5.
Stem Cells Dev ; 32(19-20): 622-637, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463089

RESUMO

Trophoblast stem (TS) cells were first isolated from the mouse placenta; however, little is known about their maintenance and niche in vivo. TS cells, like other stem cells, have a unique microenvironment in which the extracellular matrix (ECM) is a component. Placental pathology is associated with ECM change. However, how these changes and the individual ECM components impact the maintenance or differentiation of TS cells has not been established. This study identified which ECM component(s) maintain the greatest expression of markers associated with undifferentiated mouse trophoblast stem (mTS) cells and which alter the profile of markers of differentiation based on mRNA analysis. mTS cells cultured on individual ECM components and subsequent quantitative polymerase chain reaction analysis revealed that laminin promoted the expression of markers associated with undifferentiated TS cells, fibronectin promoted gene expression associated with syncytiotrophoblast (SynT) layer II cells, and collagen IV promoted the expression of genes associated with differentiated trophoblast. To investigate whether pathological placental ECM influenced the expression of genes associated with different trophoblast subtypes, the mouse model of streptozotocin (STZ)-induced pancreatic ß cell ablation and diabetes was used. Female mice administered STZ (blood glucose ≥300 mg/dL) or control (blood glucose ≤150 mg/dL) were mated. Placental pathology at embryonic day (E)14.5 was confirmed with reduced fetal blood space area, reduced expression of the pericyte marker αSMA, and decreased expression of ECM proteins. mTS cells cultured on ECM isolated from STZ placenta were associated with reduced expression of undifferentiated mTS markers and increased expression of genes associated with terminally differentiated trophoblast [Gcm-1 and SynA (SynT) and junctional zone Tpbpa and Prl2c2]. Altogether, these results support the value of using ECM isolated from the placenta as a tool for understanding trophoblast contribution to placental pathology.


Assuntos
Placenta , Trofoblastos , Feminino , Gravidez , Camundongos , Animais , Glicemia/metabolismo , Células Cultivadas , Diferenciação Celular/genética , Células-Tronco , Matriz Extracelular , Expressão Gênica
6.
Dev Dyn ; 240(11): 2505-19, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21972064

RESUMO

Early placental development in mice involves patterning of the chorion into distinct layers, though little is understood regarding the interactions that regulate its organization. Here we demonstrate that keratin aggregates found in Mrj(-/-) chorionic trophoblast cells are associated with abnormal cell morphology, collapse of the actin cytoskeleton, E-cadherin and ß-catenin misexpression and extracellular matrix (ECM) disorganization. Accordingly, Mrj(-/-) trophoblast cells in vitro are nonadherent and display erratic migratory behavior. These cells also fail to differentiate into syncytiotrophoblast cells since Rhox4b expression, a marker of syncytiotrophoblast progenitors, was maintained and Gcm1, Synb, and Syna expression failed to increase. This differentiation defect was not solely attributable to E-cadherin misexpression or ECM disorganization. However, plating Mrj-deficient cells on exogenous laminin-511 normalized their cell behavior. Lastly, we show that Mrj(-/-) chorions at embryonic day 8.5 have expanded Rhox4b expression domains and do not form normal layers of gene expression suggesting that chorion patterning requires Mrj.


Assuntos
Padronização Corporal/genética , Comunicação Celular/genética , Córion/crescimento & desenvolvimento , Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Placentação , Trofoblastos/metabolismo , Animais , Adesão Celular/genética , Células Cultivadas , Córion/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Placenta/metabolismo , Gravidez , Trofoblastos/fisiologia
7.
Biol Reprod ; 84(4): 621-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21123814

RESUMO

Development of the mouse embryo to the blastocyst stage occurs over 3 to 4 days following fertilization of the oocyte. During this time, several molecular and morphological events take place that result in the formation of three distinct cell lineages: the trophectoderm, the epiblast, and the primitive endoderm. Many studies have investigated the processes that control lineage specification in the blastocyst including gene expression, cell signaling, cell-cell contact/positional relationships, and most recently, epigenetics. Here we review, at the molecular level, recent contributions to our understanding of the mechanisms that play a role in formation of these lineages. Additionally, we focus on the next steps in differentiation to highlight processes important in the development of those lineages that contribute to the extraembryonic tissues. In this context, we discuss the establishment of extraembryonic ectoderm and the contributions of parietal and visceral endoderm to yolk sac formation.


Assuntos
Blastocisto/citologia , Linhagem da Célula/fisiologia , Animais , Blastocisto/fisiologia , Massa Celular Interna do Blastocisto/citologia , Diferenciação Celular , Divisão Celular , Linhagem da Célula/genética , Ectoderma/citologia , Ectoderma/embriologia , Indução Embrionária , Endoderma/citologia , Endoderma/embriologia , Epigênese Genética , Feminino , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Masculino , Camundongos , Modelos Biológicos , Gravidez , Trofoblastos/citologia , Inativação do Cromossomo X , Saco Vitelino/citologia , Saco Vitelino/embriologia
8.
Dev Biol ; 335(1): 120-31, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19716815

RESUMO

Prolonged maintenance of trophoblast stem (TS) cells requires fibroblast growth factor (FGF) 4 and embryonic fibroblast feeder cells or feeder cell-conditioned medium. Previous studies have shown that TGF-beta and Activin are sufficient to replace embryonic fibroblast-conditioned medium. Nodal, a member of the TGF-beta superfamily, is also known to be important in vivo for the maintenance of TS cells in the developing placenta. Our current studies indicate that TS cells do not express the Nodal co-receptor, Cripto, and do not respond directly to active Nodal in culture. Conversely, Activin subunits and their receptors are expressed in the placenta and TS cell cultures, with Activin predominantly expressed by trophoblast giant cells (TGCs). Differentiation of TS cells in the presence of TGC-conditioned medium or exogenous Activin results in a reduction in the expression of TGC markers. In line with TGC-produced Activin representing the active component in TGC-conditioned medium, this differentiation-inhibiting effect can be reversed by the addition of follistatin. Additional experiments in which TS cells were differentiated in the presence or absence of exogenous Activin or TGF-beta show that Activin but not TGF-beta results in the maintenance of expression of TS cell markers, prolongs the expression of syncytiotrophoblast markers, and significantly delays the expression of spongiotrophoblast and TGC markers. These results suggest that Activin rather than TGF-beta (or Nodal) acts directly on TS cells influencing both TS cell maintenance and cell fate, depending on whether the cells are also exposed to FGF4.


Assuntos
Ativinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Orelha Interna , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Trofoblastos , Receptores de Ativinas/genética , Receptores de Ativinas/metabolismo , Ativinas/genética , Ativinas/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Células Cultivadas , Meios de Cultivo Condicionados/química , Orelha Interna/citologia , Orelha Interna/embriologia , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fator 4 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inibinas/genética , Inibinas/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Análise em Microsséries , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Proteína Nodal/farmacologia , Comunicação Parácrina/fisiologia , Placenta/citologia , Placenta/metabolismo , Gravidez , Células-Tronco/citologia , Fator de Crescimento Transformador beta/farmacologia , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos
9.
Sci Rep ; 10(1): 544, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953475

RESUMO

1 in 5 women report cannabis use during pregnancy, with nausea cited as their primary motivation. Studies show that (-)-△9-tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in cannabis, causes fetal growth restriction, though the mechanisms are not well understood. Given the critical role of the placenta to transfer oxygen and nutrients from mother, to the fetus, any compromise in the development of fetal-placental circulation significantly affects maternal-fetal exchange and thereby, fetal growth. The goal of this study was to examine, in rats, the impact of maternal Δ9-THC exposure on fetal development, neonatal outcomes, and placental development. Dams received a daily intraperitoneal injection (i.p.) of vehicle control or Δ9-THC (3 mg/kg) from embryonic (E)6.5 through 22. Dams were allowed to deliver normally to measure pregnancy and neonatal outcomes, with a subset sacrificed at E19.5 for placenta assessment via immunohistochemistry and qPCR. Gestational Δ9-THC exposure resulted in pups born with symmetrical fetal growth restriction, with catch up growth by post-natal day (PND)21. During pregnancy there were no changes to maternal food intake, maternal weight gain, litter size, or gestational length. E19.5 placentas from Δ9-THC-exposed pregnancies exhibited a phenotype characterized by increased labyrinth area, reduced Epcam expression (marker of labyrinth trophoblast progenitors), altered maternal blood space, decreased fetal capillary area and an increased recruitment of pericytes with greater collagen deposition, when compared to vehicle controls. Further, at E19.5 labyrinth trophoblast had reduced glucose transporter 1 (GLUT1) and glucocorticoid receptor (GR) expression in response to Δ9-THC exposure. In conclusion, maternal exposure to Δ9-THC effectively compromised fetal growth, which may be a result of the adversely affected labyrinth zone development. These findings implicate GLUT1 as a Δ9-THC target and provide a potential mechanism for the fetal growth restriction observed in women who use cannabis during pregnancy.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Dronabinol/efeitos adversos , Retardo do Crescimento Fetal/induzido quimicamente , Placenta/irrigação sanguínea , Animais , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Transportador de Glucose Tipo 1/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Ratos , Receptores de Glucocorticoides/metabolismo , Trofoblastos/efeitos dos fármacos , Trofoblastos/patologia
10.
PLoS One ; 15(1): e0226735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917811

RESUMO

The major milestones in mouse placental development are well described, but our understanding is limited to how the placenta can adapt to damage or changes in the environment. By using stereology and expression of cell cycle markers, we found that the placenta grows under normal conditions not just by hyperplasia of trophoblast cells but also through extensive polyploidy and cell hypertrophy. In response to feeding a low protein diet to mothers prior to and during pregnancy, to mimic chronic malnutrition, we found that this normal program was altered and that it was influenced by the sex of the conceptus. Male fetuses showed intrauterine growth restriction (IUGR) by embryonic day (E) 18.5, just before term, whereas female fetuses showed IUGR as early as E16.5. This difference was correlated with differences in the size of the labyrinth layer of the placenta, the site of nutrient and gas exchange. Functional changes were implied based on up-regulation of nutrient transporter genes. The junctional zone was also affected, with a reduction in both glycogen trophoblast and spongiotrophoblast cells. These changes were associated with increased expression of Phlda2 and reduced expression of Egfr. Polyploidy, which results from endoreduplication, is a normal feature of trophoblast giant cells (TGC) but also spongiotrophoblast cells. Ploidy was increased in sinusoidal-TGCs and spongiotrophoblast cells, but not parietal-TGCs, in low protein placentas. These results indicate that the placenta undergoes a range of changes in development and function in response to poor maternal diet, many of which we interpret are aimed at mitigating the impacts on fetal and maternal health.


Assuntos
Aclimatação , Dieta com Restrição de Proteínas/efeitos adversos , Embrião de Mamíferos/citologia , Retardo do Crescimento Fetal/etiologia , Privação de Alimentos , Placenta/citologia , Animais , Proliferação de Células , Embrião de Mamíferos/fisiologia , Feminino , Desenvolvimento Fetal , Retardo do Crescimento Fetal/patologia , Células Gigantes , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos C57BL , Placenta/fisiologia , Gravidez , Trofoblastos/citologia , Trofoblastos/fisiologia
11.
Dev Cell ; 7(5): 763-9, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15525537

RESUMO

Heterotrimeric G protein alpha subunits, RGS proteins, and GoLoco motif proteins have been recently implicated in the control of mitotic spindle dynamics in C. elegans and D. melanogaster. Here we show that "regulator of G protein signaling-14" (RGS14) is expressed by the mouse embryonic genome immediately prior to the first mitosis, where it colocalizes with the anastral mitotic apparatus of the mouse zygote. Loss of Rgs14 expression in the mouse zygote results in cytofragmentation and failure to progress to the 2-cell stage. RGS14 is found in all tissues and segregates to the nucleus in interphase and to the mitotic spindle and centrioles during mitosis. Alteration of RGS14 levels in exponentially proliferating cells leads to cell growth arrest. Our results indicate that RGS14 is one of the earliest essential product of the mammalian embryonic genome yet described and has a general role in mitosis.


Assuntos
Divisão Celular/fisiologia , Mamíferos/fisiologia , Proteínas RGS/fisiologia , Fuso Acromático/química , Zigoto/fisiologia , Animais , Anticorpos Monoclonais/metabolismo , Blastocisto/citologia , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Deleção de Genes , Vetores Genéticos , Células HeLa , Heterozigoto , Humanos , Hidrazinas , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas RGS/genética , Proteínas RGS/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos
12.
Sci Rep ; 9(1): 2742, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808910

RESUMO

The placenta is an essential organ that is formed during pregnancy and its proper development is critical for embryonic survival. While several animal models have been shown to exhibit some of the pathological effects present in human preeclampsia, these models often do not represent the physiological aspects that have been identified. Hypoxia-inducible factor 1 alpha (Hif-1α) is a necessary component of the cellular oxygen-sensing machinery and has been implicated as a major regulator of trophoblast differentiation. Elevated levels of Hif-1α in the human placenta have been linked to the development of pregnancy-associated disorders, such as preeclampsia and fetal growth restriction. As oxygen regulation is a critical determinant for placentogenesis, we determined the effects of constitutively active Hif-1α, specifically in trophoblasts, on mouse placental development in vivo. Our research indicates that prolonged expression of trophoblast-specific Hif-1α leads to a significant decrease in fetal birth weight. In addition, we noted significant physiological alterations in placental differentiation that included reduced branching morphogenesis, alterations in maternal and fetal blood spaces, and failure to remodel the maternal spiral arteries. These placental alterations resulted in subsequent maternal hypertension with parturitional resolution and maternal kidney glomeruloendotheliosis with accompanying proteinuria, classic hallmarks of preeclampsia. Our findings identify Hif-1α as a critical molecular mediator of placental development and indicate that prolonged expression of Hif-1α, explicitly in placental trophoblasts causes maternal pathology and establishes a mouse model that significantly recapitulates the physiological and pathophysiological characteristics of preeclampsia with fetal growth restriction.


Assuntos
Retardo do Crescimento Fetal/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/patologia , Placenta/patologia , Placentação , Pré-Eclâmpsia/patologia , Trofoblastos/metabolismo , Animais , Feminino , Retardo do Crescimento Fetal/metabolismo , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez
13.
Int J Stem Cells ; 11(1): 111-120, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29699384

RESUMO

BACKGROUND: Transforming growth factor beta (TGF-ß) signaling has been shown to control a large number of critical cellular actions such as cell death, differentiation, and development and has been implicated as a major regulator of placental function. SM10 cells are a mouse placental progenitor cell line, which has been previously shown to differentiate into nutrient transporting, labyrinthine-like cells upon treatment with TGF-ß. However, the signal transduction pathway activated by TGF-ß to induce SM10 progenitor differentiation has yet to be fully investigated. MATERIALS AND METHODS: In this study the SM10 labyrinthine progenitor cell line was used to investigate TGF-ß induced differentiation. Activation of the TGF-ß pathway and the ability of TGF-ß to induce differentiation were investigated by light microscopy, luciferase assays, and Western blot analysis. RESULTS AND CONCLUSIONS: In this report, we show that three isoforms of TGF-ß have the ability to terminally differentiate SM10 cells, whereas other predominant members of the TGF-ß superfamily, Nodal and Activin A, do not. Additionally, we have determined that TGF-ß induced Smad2 phosphorylation can be mediated via the ALK-5 receptor with subsequent transactivation of the Activin response element. Our studies identify an important regulatory signaling pathway in SM10 progenitor cells that is involved in labyrinthine trophoblast differentiation.

14.
Sci Rep ; 8(1): 17162, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464252

RESUMO

This study characterized the effect of the reduced utero-placental perfusion pressure (RUPP) model of placental insufficiency on placental morphology and trophoblast differentiation at mid-late gestation (E14.5). Altered trophoblast proliferation, reduced syncytiotrophoblast gene expression, increased numbers of sinusoidal trophoblast giant cells, decreased Vegfa and decreased pericyte presence in the labyrinth were observed in addition to changes in maternal blood spaces, the fetal capillary network and reduced fetal weight. Further, the junctional zone was characterized by reduced spongiotrophoblast and glycogen trophoblast with increased trophoblast giant cells. Increased Hif-1α and TGF-ß-3 in vivo with supporting hypoxia studies in trophoblast stem (TS) cells in vitro, support hypoxia as a contributing factor to the RUPP placenta phenotype. Together, this study identifies altered cell populations within the placenta that may contribute to the phenotype, and thus support the use of RUPP in the mouse as a model of placenta insufficiency. As such, this model in the mouse provides a valuable tool for understanding the phenotypes resulting from genetic manipulation of isolated cell populations to further understand the etiology of placenta insufficiency and fetal growth restriction. Further this study identifies a novel relationship between placental insufficiency and pericyte depletion in the labyrinth layer.


Assuntos
Pressão Sanguínea , Diferenciação Celular , Pericitos/fisiologia , Placenta/fisiologia , Circulação Placentária , Insuficiência Placentária/fisiopatologia , Trofoblastos/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Gravidez
15.
Sci Rep ; 8(1): 3961, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500366

RESUMO

Fetal growth and survival is dependent on the elaboration and propinquity of the fetal and maternal circulations within the placenta. Central to this is the formation of the interhaemal membrane, a multi-cellular lamina facilitating exchange of oxygen, nutrients and metabolic waste products between the mother and fetus. In rodents, this cellular barrier contains two transporting layers of syncytiotrophoblast, which are multinucleated cells that form by cell-cell fusion. Previously, we reported the expression of the GPI-linked cell surface protein LY6E by the syncytial layer closest to the maternal sinusoids of the mouse placenta (syncytiotrophoblast layer I). LY6E has since been shown to be a putative receptor for the fusogenic protein responsible for fusion of syncytiotrophoblast layer I, Syncytin A. In this report, we demonstrate that LY6E is essential for the normal fusion of syncytiotrophoblast layer I, and for the proper morphogenesis of both fetal and maternal vasculatures within the placenta. Furthermore, specific inactivation of Ly6e in the epiblast, but not in placenta, is compatible with embryonic development, indicating the embryonic lethality reported for Ly6e-/- embryos is most likely placental in origin.


Assuntos
Antígenos de Superfície/genética , Fusão Celular , Proteínas Ligadas por GPI/genética , Genes Letais , Morfogênese , Placenta/citologia , Trofoblastos/citologia , Animais , Proliferação de Células/genética , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Placenta/irrigação sanguínea , Gravidez
16.
Placenta ; 57: 170-174, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28864008

RESUMO

Glucose metabolism in trophoblast cells is essential to provide the required energy for the development and function of the placenta. Glyceraldehyde 3-phosphate dehydrogenase (Gapdh), a key enzyme in the glycolysis pathway has been considered ubiquitously expressed in cells. There is, however, a growing body of evidence suggesting that Gapdh has many functions in pathways unrelated to glucose metabolism. In the present study, we show that GAPDH expression and sub-cellular localization changes through gestation in the mouse placenta. Our findings raise the possibility that GAPDH has multiple functions in trophoblast cells and the developing placenta, while also cautioning against its use as an endogenous reference or standard for gene expression in the placenta.


Assuntos
Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Placenta/enzimologia , Ativinas/metabolismo , Animais , Feminino , Fator 4 de Crescimento de Fibroblastos/metabolismo , Camundongos , Gravidez
17.
Sci Rep ; 7(1): 5575, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717241

RESUMO

Trophoblast stem (TS) cells in the mouse derive from the polar trophectoderm of the blastocyst and persist through early gestation (to E8.5) to support placental development. Further development and growth is proposed to rely on layer-restricted progenitor cells. Stem cell antigen (Sca) -1 is a member of the Ly6 gene family and a known marker of stem cells in both hematopoietic and non-hematopoietic mouse tissues. Having identified that Sca-1 mRNA was highly expressed in mouse TS cells in culture, we found that it was also expressed in a subset of trophoblast within the chorion and labyrinth layer of the mouse placenta. Isolation and in vitro culture of Sca-1+ trophoblast cells from both differentiated TS cell cultures and dissected mouse placentae resulted in proliferating colonies that expressed known markers of TS cells. Furthermore, these cells could be stimulated to differentiate and expressed markers of both junctional zone and labyrinth trophoblast subtypes in a manner comparable to established mouse TS cell lines. Our results suggest that we have identified a subpopulation of TS cell-like cells that persist in the mid- to late- gestation mouse placenta as well as a cell surface protein that can be used to identify and isolate these cells.


Assuntos
Ataxina-1/genética , Ataxina-1/metabolismo , Células-Tronco Pluripotentes/citologia , Trofoblastos/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Córion/citologia , Córion/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Camundongos , Células-Tronco Pluripotentes/metabolismo , Gravidez , Trofoblastos/metabolismo , Regulação para Cima
18.
Methods Mol Med ; 121: 275-93, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16251749

RESUMO

Placental development is a dynamic and complex process and much of our current understanding of the underlying molecular processes comes from analysis of targeted gene mutations in mice. There are more than 50 strains of mutant mice that have placental defects, and it has become widely appreciated that placental defects should be suspected in cases where embryonic lethality is observed. The degree to which these phenotypes are investigated is highly variable, owing to a general lack of expertise in the field. However, there has been considerable progress in developing techniques and reagents for analyzing placental phenotypes that are relatively simple to apply and that should be accessible to all investigators. This chapter provides a basic outline of the strategies for the general identification and then the subsequent detailed investigation of placental phenotypes.


Assuntos
Mutação/genética , Placenta/anormalidades , Placenta/fisiologia , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores , Membrana Corioalantoide/embriologia , Decídua/anatomia & histologia , Dissecação , Implantação do Embrião , Feminino , Genótipo , Laminina , Camundongos , Camundongos Mutantes , Fenótipo , Placenta/anatomia & histologia , Placenta/embriologia , Gravidez , Trofoblastos/citologia , Saco Vitelino
19.
Stem Cells Dev ; 23(23): 2921-30, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25003940

RESUMO

The placenta is a transient organ that develops upon the initiation of pregnancy and is essential for embryonic development and fetal survival. The rodent placenta consists of distinct lineages and includes cell types that are analogous to those that make up the human placenta. Trophoblast cells within the labyrinth layer, which lies closest to the fetus, fuse and come in contact with maternal blood, thus facilitating nutrient and waste exchange between the mother and the baby. Abnormalities of the placenta may occur as a result of cellular stress and have been associated with pregnancy-associated disorders: such as preeclampsia, intrauterine growth restriction, and placental insufficiency. Cellular stress has also been shown to alter proliferation and differentiation rates of trophoblast cells. This stress response is important for cell survival and ensures continued placental functionality. AMP-activated protein kinase is an important sensor of cellular metabolism and stress. To study the role of AMPK in the trophoblast cells, we used RNA interference to simultaneously knockdown levels of both the AMPK alpha isoforms, AMPKα1 and AMPKα2. SM10 trophoblast progenitor cells were transduced with AMPKα1/2 shRNA and stable clones were established to analyze the effects of AMPK knockdown on important cellular functions. Our results indicate that a reduction in AMPK levels causes alterations in cell morphology, growth rate, and nutrient transport, thus identifying an important role for AMPK in the regulation of placental trophoblast differentiation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco/enzimologia , Trofoblastos/enzimologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Técnicas de Silenciamento de Genes , Camundongos , Células-Tronco/citologia , Trofoblastos/citologia
20.
Development ; 135(12): 2083-91, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18448564

RESUMO

The labyrinth of the rodent placenta contains villi that are the site of nutrient exchange between mother and fetus. They are covered by three trophoblast cell types that separate the maternal blood sinusoids from fetal capillaries--a single mononuclear cell that is a subtype of trophoblast giant cell (sinusoidal or S-TGC) with endocrine function and two multinucleated syncytiotrophoblast layers, each resulting from cell-cell fusion, that function in nutrient transport. The developmental origins of these cell types have not previously been elucidated. We report here the discovery of cell-layer-restricted genes in the mid-gestation labyrinth (E12.5-14.5) including Ctsq in S-TGCs (also Hand1-positive), Syna in syncytiotrophoblast layer I (SynT-I), and Gcm1, Cebpa and Synb in syncytiotrophoblast layer II (SynT-II). These genes were also expressed in distinct layers in the chorion as early as E8.5, prior to villous formation. Specifically, Hand1 was expressed in apical cells lining maternal blood spaces (Ctsq is not expressed until E12.5), Syna in a layer immediately below, and Gcm1, Cebpa and Synb in basal cells in contact with the allantois. Cebpa and Synb were co-expressed with Gcm1 and were reduced in Gcm1 mutants. By contrast, Hand1 and Syna expression was unaltered in Gcm1 mutants, suggesting that Gcm1-positive cells are not required for the induction of the other chorion layers. These data indicate that the three differentiated trophoblast cell types in the labyrinth arise from distinct and autonomous precursors in the chorion that are patterned before morphogenesis begins.


Assuntos
Estruturas Celulares/citologia , Córion/embriologia , Córion/fisiologia , Placenta/embriologia , Trofoblastos/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular , Células Cultivadas , Córion/citologia , Cruzamentos Genéticos , Proteínas de Ligação a DNA , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Heterozigoto , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Modelos Biológicos , Mutação , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Placenta/citologia , Placenta/fisiologia , Gravidez , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Células-Tronco/citologia , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA