Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(14): 6337-6346, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459449

RESUMO

Schwann cell (SC) transplantation represents a promising therapeutic approach for traumatic spinal cord injury but is frustrated by barrier formation, preventing cell migration, and axonal regeneration at the interface between grafted SCs and reactive resident astrocytes (ACs). Although regenerating axons successfully extend into SC grafts, only a few cross the SC-AC interface to re-enter lesioned neuropil. To date, research has focused on identifying and modifying the molecular mechanisms underlying such scarring cell-cell interactions, while the influence of substrate topography remains largely unexplored. Using a recently modified cell confrontation assay to model SC-AC barrier formation in vitro, highly oriented poly(ε-caprolactone) nanofibers were observed to reduce AC reactivity, induce extensive oriented intermingling between SCs and ACs, and ultimately enable substantial neurite outgrowth from the SC compartment into the AC territory. It is anticipated that these findings will have important implications for the future design of biomaterial-based scaffolds for nervous tissue repair.


Assuntos
Astrócitos , Neuritos , Humanos , Axônios , Regeneração Nervosa , Cicatriz/patologia , Células de Schwann/patologia , Células de Schwann/fisiologia , Células de Schwann/transplante
2.
J Environ Manage ; 365: 121597, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941855

RESUMO

Some studies have reported the removal of As (As) and fluoride (F-) using different sacrificial anodes; however, they have been tested with a synthetic solution in a batch system without hydrated silica (SiO2) interaction. Due to the above, concurrent removal of As, F-, and SiO2 from natural deep well water was evaluated (initial concentration: 35.5 µg L-1 As, 1.1 mg L-1F-, 147 mg L-1 SiO2, pH 8.6, and conductivity 1024 µS cm-1), by electrocoagulation (EC) process in continuous mode comparing three different configurations of sacrificial anodes (Al, Fe, and Al-Fe). EC was performed in a new reactor equipped with a small flow distributor and turbulence promoter at the entrance of the first channel to homogenize the flow. The best removal was found at j = 5 mA cm-2 and u = 1.3 cm s-1, obtaining arsenic residual concentrations (CAs) of 1.33, 0.45, and 0.77 µg L-1, fluoride residual concentration ( [Formula: see text] ) of 0.221, 0.495, and 0.622 mg L-1, and hydrated silica residual concentration ( [Formula: see text] ) of 21, 34, and 56 mg L-1, with costs of approximately 0.304, 0.198, and 0.228 USD m-3 for the Al, Fe and Al-Fe anodes, respectively. Al anode outperforms Fe and Al-Fe anodes in concurrently removing As, F- and SiO2. The residual concentrations of As and F- complied with the recommendations of the World Health Organization (WHO) (As < 10 µg L-1 and F- < 1 mg L-1). The spectroscopic analyses of the Al, Fe, and Al-Fe aggregates showed the formation of aluminosilicates, iron oxyhydroxides and oxides, and calcium and sodium silicates involved in removing As, F-, and SiO2. It is concluded that Al would serve as the most suitable sacrificial anode.


Assuntos
Arsênio , Eletrodos , Fluoretos , Dióxido de Silício , Fluoretos/química , Dióxido de Silício/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Alumínio/química , Ferro/química , Poços de Água , Eletrocoagulação/métodos
3.
Adv Healthc Mater ; 12(20): e2301030, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37311209

RESUMO

Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.


Assuntos
Células-Tronco , Engenharia Tecidual , Humanos , Descoberta de Drogas , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/farmacologia
4.
Water Sci Technol ; 65(8): 1406-11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22466586

RESUMO

This work concerns the application of a laboratory scale rotating cylinder electrode (RCE) to recover zinc from rinse water generated by the electrolytic zinc process (initially 1,300, 4,400, 50, 20 mg L(-1) of Zn(II), Fe(III), Ag(I) and Cr(VI), respectively, at pH 2), although it is also applicable to other electroplating industries. Experimental results demonstrated the convenience of the removal of ferric ions, as (Fe(OH)(3(s))) by a pH adjustment to 4, before zinc electro recovery on the RCE. The generation of smooth zinc deposits on the RCE was obtained at Reynolds numbers within the range of 15,000 ≤ Re ≤ 124,000 and limiting current densities (J(L)) in the interval of -4.8 to -13 mA cm(-2). The zinc recovery reached a conversion of 67% in 90 min of electrolysis for Re = 124,000 and J = -13 mA cm(-2), 21% current efficiency, and energy consumption of 9.5 kWh m(-3). The treated solution can be recycled back through the same rinsing process.


Assuntos
Resíduos Industriais , Zinco/isolamento & purificação , Precipitação Química , Eletrodos , Galvanoplastia , Ferro/química
5.
Chemosphere ; 271: 129804, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33736209

RESUMO

This paper deals with the degradation of Acid Violet 19 (AV19) textile dye by the electro-peroxone (E-peroxone) process in a laboratory flow plant using a filter press cell fitted with a 3D gas diffusion electrode (3D GDE) containing a graphite felt positioned on carbon-cloth PTFE as cathode, and a Ti|IrSnSb-oxides plate as anode. H2O2 was formed by the oxygen reduction reaction (ORR) in the cathode; the air was supplied by an external compressor. The O3 produced externally by an ozonator was added in the pipeline at the outlet of the electrolyzer to promote the reaction between the H2O2 and O3 to produce OH, which is the responsible for the mineralization of the dye. The effect of electrolyte flow rate (Q), current density (j), and initial concentration of AV19 dye on its degradation was addressed. The best electrolysis in a solution containing 40 mg TOC L-1, 0.05 M Na2SO4, at pH 3, was obtained at j = 20 mA cm-2, Q = 2.0 L min-1, using a pressure of the air fed to the 3D GDE of PGDE = 3 psi, and an ozone inlet mass flow rate of [Formula: see text]  = 14.5 mg L-1, achieving 100% discoloration, 60% mineralization, with mineralization current efficiency and energy consumption of 36% and 0.085 kWh(gTOC)-1. The degradation of AV19 dye was also performed by anodic oxidation plus H2O2 electrogenerated (AO-H2O2) and ozonation. The oxidation power was AO-H2O2 < ozonation < E-peroxone. Three carboxylic acids were quantified by chromatography as oxidation end products.


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Benzenossulfonatos , Eletrodos , Laboratórios , Oxirredução , Têxteis , Poluentes Químicos da Água/análise
6.
J Neurosci Methods ; 361: 109289, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271068

RESUMO

BACKGROUND: Molecular composition and topography of the extracellular matrix (ECM) influence regenerative cell migration following peripheral nerve injury (PNI). Advanced tissue engineering strategies for the repair of neurotmesis-type PNI include the development of nanofiber-containing implantable scaffolds that mimic features of the ECM to orchestrate regenerative growth. Reliable and quantifiable in vitro assays are required to assess the ability of such substrates to influence migration of the cell types of interest. However, most popular migration assays monitor cell migration into a cell exclusion zone (CEZ) but have dubious abilities to preserve the molecular and topographical cues of the substrate. NEW METHOD: Elastic band spacers (EBS), a simple, economical and standardized technique for the generation of well-defined CEZ based on the use of commercially available elastic bands, are introduced. RESULTS: EBS could sufficiently preserve ECM-derived molecular and poly(ε-caprolactone) (PCL) nanofiber-derived topographical cues. The application of EBS in the absence and presence of nanofiber-derived topographical cues was validated using perineurial cells and Schwann cells, both known to play key roles in peripheral nerve regeneration. COMPARISON WITH EXISTING METHODS: In contrast to EBS, commercial silicone inserts and the popular scratch assay caused substantial ECM substrate disruption, thereby preventing these techniques from being included in further investigations employing deposition of PCL nanofibers and cell migration analysis. CONCLUSIONS: EBS represent a useful addition to the existing repertoire of migration assays offering significant benefits in terms of substrate preservation. The simplicity and economy of the approach make it immediately accessible to research groups at minimal extra expense.


Assuntos
Nanofibras , Movimento Celular , Sinais (Psicologia) , Matriz Extracelular , Humanos , Nervos Periféricos , Alicerces Teciduais
7.
Chemosphere ; 246: 125697, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31884229

RESUMO

The degradation of Acid Red 1 (AR1) azo dye by solar photoelectro-Fenton-like (SPEF-like) process involving continuously electrogenerated hypochlorous acid (HClO) and photoregenerated Fe(II) to yield hydroxyl radicals, has been studied. The assays were made in a flow plant that included a filter-press cell equipped with a Ti|Ir-Sn-Sb oxide anode, to oxidize Cl- ion to HClO, and a stainless-steel cathode. The cell was coupled to a compound parabolic collector (CPC) photoreactor, in series with a reservoir containing 6 L of solution. The influence of the added Fe2+ concentration, current density and initial AR1 content over the performance of the SPEF-like process was systematically studied. The best treatment for 0.196 mM AR1 solutions in 35 mM NaCl and 25 mM Na2SO4 at pH 3.0 was achieved in the presence of 0.40 mM Fe2+ under a current density of 15 mA cm-2, which yielded total color removal at 120 min and 74% COD decay at 480 min, with 25% of average current efficiency and 0.076 kW h (g COD)-1 of energy consumption. The SPEF-like process was compared with anodic oxidation with electrogenerated active chlorine (AO-HClO), electro Fenton-like (EF-like) and photoelectro-Fenton-like (PEF-like) processes, and it was found that the oxidation power decreased in the sequence: SFEF-like > PEF-like > EF-like > AO-HClO. Ion-exclusion HPLC analysis of electrolyzed solutions revealed the formation of maleic and oxalic acid as final short-chain linear carboxylic acids.


Assuntos
Compostos Azo/química , Rodaminas/química , Poluentes Químicos da Água/química , Técnicas Eletroquímicas , Eletrodos , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Oxirredução , Processos Fotoquímicos , Luz Solar
8.
Chemosphere ; 244: 125417, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31809937

RESUMO

This paper concerns simultaneous removal of fluoride and hydrated silica from groundwater (4.08 mg L-1 fluoride, 90 mg L-1 hydrated silica, 50 mg L-1 sulfate, 0.23 mg L-1 phosphate, pH 7.38 and 450 µS cm-1 conductivity) by electrocoagulation (EC), using an up-flow EC reactor, with a six-cell stack in a serpentine array, opened at the top of the cell to favor gas release. Aluminum plates were used as sacrificial electrodes. The effect of current density (4 ≤ j ≤ 7 mA cm-2) and mean linear flow rate (1.2 ≤ u ≤ 4.8 cm s-1), applied to the EC reactor, on the elimination of fluoride and hydrated silica was analyzed. The removal of fluoride followed the WHO guideline (<1.5 mg L-1), while the hydrated silica was abated at 7 mA cm-2 and 1.2 cm s-1, with energy consumption of 2.48 kWh m-3 and an overall operational cost of 0.441 USD m-3. Spectroscopic analyses of the flocs by XRD, XRF-EDS, SEM-EDS, and FTIR indicated that hydrated silica reacted with the coagulant forming aluminosilicates, and fluoride replaced a hydroxide from aluminum aggregates, while sulfates and phosphates were removed by adsorption process onto the flocs. The well-engineered EC reactor allowed the simultaneous removal of fluoride and hydrated silica.


Assuntos
Fluoretos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Alumínio/química , Eletrocoagulação/métodos , Eletrodos , Água Subterrânea/química , Concentração de Íons de Hidrogênio , Ácido Silícico/química , Sulfatos
9.
Chemosphere ; 259: 127466, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32615456

RESUMO

This work addresses the mineralization of the widely used Methyl Orange (MO) azo dye by technologies based on H2O2 electrogeneration at a 3D-like air-diffusion cathode. These include two Fe2+-catalyzed processes such as electro-Fenton (EF) and photoelectro-Fenton (PEF). Bulk electrolyses were performed in a recirculation flow plant, in which the Eco-Cell filter-press electrochemical reactor was connected in series with a UVA photoreactor. The former reactor was equipped with a Ti|Ir-Sn-Sb oxide plate anode alongside a 3D-like air-diffusion cathode made from graphite felt and hydrophobized carbon cloth, aimed at electrogenerating H2O2 on site. The influence of current density (j), volumetric flow rate (Q) and initial MO concentration was examined. The greatest oxidation power corresponded to PEF process. The best operation conditions to treat 30 mg L-1 of total organic carbon of MO in a 50 mM Na2SO4 solution by PEF were found at 0.50 mM Fe2+, pH 3.0, j = 20 mA cm-2 and Q = 2.0 L min-1, obtaining 100% and 94% of color and TOC removals at 30 and 240-300 min, respectively. This accounted for 35% of mineralization current efficiency and 0.12 kWh (g TOC)-1 of energy consumption at the end of the electrolysis. The oxidation power of EF and PEF was compared with that of anodic oxidation (AO), and the sequence obtained was: PEF > EF > AO. The dye was gradually degraded, yielding non-toxic short carboxylic acids, like maleic, fumaric, formic, oxalic and oxamic, whose Fe(III) complexes were rapidly photolyzed.


Assuntos
Compostos Azo/química , Poluentes Químicos da Água/química , Carbono , Ácidos Carboxílicos , Difusão , Eletrodos , Eletrólise , Compostos Ferrosos , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Fotólise
10.
J Hazard Mater ; 392: 122349, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109798

RESUMO

In this work, the influence of oxygen-containing surface groups of activated carbon electrodes on the charge efficiency of electro-assisted adsorption of As(V) was investigated. It was distinguished between activated carbons modified through acidic (oxidation) and thermal (reduction) treatments, starting with a granular pristine commercial activated carbon of bituminous origin. The textural characterization of the three materials showed that the treatments did not produce significant changes in the surface area and in the distribution of pores. The three carbon samples were used to fabricate packed electrodes with stainless-steel mesh as electric current collector. This work report that the application of anodic potentials (1.01 and 1.41 V vs. NHE) increased the adsorption capacity and rate of arsenate uptake in solutions containing only this contaminant (2.5 mg L-1) at pH 7. The oxidized carbon electrode presented the lowest capacitance and adsorption capacity during electroadsorption (0.33 mg g-1), compared to pristine material (1.77 mg g-1). On the other hand, the reduced electrode displayed the highest adsorption capacity of arsenate (3.14 mg g-1) when applying a potential of 1.01 V. The results were correlated with the potential of zero charge values. In addition, for this material, the rate of kinetics increased 26.7 % compared to experiments without applied potential.

11.
Chemosphere ; 211: 149-155, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071426

RESUMO

The simultaneous removal of hydrated silica, fluoride and arsenic from deep well water (hydrated silica 72 mgL-1, fluoride 4.4 mgL-1, arsenic 106.2 µgL-1, sulfate 50 mgL-1, phosphate 0.99 mgL-1, pH = 8.2 and conductivity 659 µScm-1) by electrocoagulation (EC) was investigated. The EC was performed in a continuous electrochemical reactor using aluminum plates as sacrificial anodes coupled directly to a jar test device. The effect of current density (4 ≤ j ≤ 8 mA cm-2) and mean linear flow rates in the EC reactor (0.057 ≤ u ≤ 0.57 cm s-1) on the hydrated silica, fluoride, and arsenic removal efficiencies was analyzed. The abatement of hydrated silica was obtained at 8 mA cm-2 and 0.057 cm s-1, while the residual concentrations of F- and As after the same electrolysis were 0.19 mg L-1 and 9.8 µg L-1, satisfying the WHO guidelines for F- (≤1.5 mg L-1) and As (≤10 µg L-1). Spectroscopic analyses on aluminum flocs revealed that they are predominantly composed of aluminum silicates. Arsenates adsorb on aluminum flocs and fluoride replaces a hydroxyl group from aluminum aggregates.


Assuntos
Arsênio/química , Fluoretos/química , Água Subterrânea/química , Dióxido de Silício/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Alumínio/química , Poluentes Químicos da Água/análise
12.
Chemosphere ; 198: 174-181, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29421727

RESUMO

The degradation of solutions of the antibiotic levofloxacin (LVN) in sulfate medium at pH 3.0 has been investigated at pre-pilot scale by solar photoelectro-Fenton (SPEF) process. The flow plant included an FM01-LC filter-press cell equipped with a Ti|Pt anode and a three-dimensional-like air-diffusion cathode, connected to a compound parabolic collector as photoreactor and a continuous stirred tank under recirculation batch mode. The effect of volumetric flow rate on H2O2 electrogeneration from O2 reduction was assessed. Then, the influence of initial LVN concentration and Fe2+ concentration as catalyst on dissolved organic carbon (DOC) removal was thoroughly investigated. LVN was gradually mineralized by SPEF process, with faster DOC abatement at 0.50 mM Fe2+, yielding 100% after 360 min at applied cathodic potential of -0.30 V|SHE. The high mineralization current efficiency (MCE) and low specific energy consumption (ECDOC) revealed the extraordinary role of homogeneous hydroxyl radicals and natural UV light, which allowed the degradation of the antibiotic and its by-products with MCE values greater than 100%. Five cyclic by-products, N,N-diethylformamide and three short-chain linear carboxylic acids were detected by GC-MS and HPLC analyses. A parametric model to simulate the DOC decay versus electrolysis time was implemented for the SPEF pre-pilot flow plant, showing good agreement with experimental data.


Assuntos
Antibacterianos/análise , Peróxido de Hidrogênio/química , Ferro/química , Levofloxacino/análise , Modelos Teóricos , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Antibacterianos/efeitos da radiação , Catálise , Relação Dose-Resposta a Droga , Técnicas Eletroquímicas , Levofloxacino/efeitos da radiação , Projetos Piloto , Solubilidade , Fatores de Tempo , Poluentes Químicos da Água/efeitos da radiação
13.
Chemosphere ; 177: 1-6, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28279900

RESUMO

The novelty of this communication lies in the use of a Ti-RuO2 anode which has not been tested for the oxidation of free cyanide in alkaline media at concentrations similar to those found in wastewater from the Merrill Crowe process (100 mg L-1 KCN and pH 11), which is typically used for the recovery of gold and silver. The anode was prepared by the Pechini method and characterized by SEM. Linear sweep voltammetries on a Ti-RuO2 rotating disk electrode (RDE) confirmed that cyanide is oxidized at 0.45 < E < 1.0 V vs SHE, while significant oxygen evolution reaction (OER) occurred. Bulk oxidation of free cyanide was investigated on Ti-RuO2 meshes fitted into a filter-press electrolyzer. Bulk electrolyzes were performed at constant potentials of 0.85 V and 0.95 V and at different mean linear flow rates ranging between 1.2 and 4.9 cm s-1. The bulk anodic oxidation of cyanide at 0.85 V and 3.7 cm s-1 achieved a degradation of 94%, with current efficiencies of 38% and an energy consumption of 24.6 kWh m-3. Moreover, the degradation sequence of cyanide was also examined by HPLC.


Assuntos
Cianetos/química , Eletrólise , Rutênio/química , Titânio/química , Purificação da Água/métodos , Cromatografia Líquida de Alta Pressão , Eletrodos , Ouro/química , Concentração de Íons de Hidrogênio , Modelos Lineares , Microscopia Eletrônica de Varredura , Oxirredução , Oxigênio/química , Prata/química , Águas Residuárias
14.
Chemosphere ; 144: 2113-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26583293

RESUMO

We investigated simultaneous arsenic and fluoride removal from ground water by electrocoagulation (EC) using aluminum as the sacrificial anode in a continuous filter-press reactor. The groundwater was collected at a depth of 320 m in the Bajío region in Guanajuato Mexico (arsenic 43 µg L(-1), fluoride 2.5 mg L(-1), sulfate 89.6 mg L(-1), phosphate 1.8 mg L(-1), hydrated silica 112.4 mg L(-1), hardness 9.8 mg L(-1), alkalinity 31.3 mg L(-1), pH 7.6 and conductivity 993 µS cm(-1)). EC was performed after arsenite was oxidized to arsenate by addition of 1 mg L(-1) hypochlorite. The EC tests revealed that at current densities of 4, 5 and 6 mA cm(-2) and flow velocities of 0.91 and 1.82 cm s(-1), arsenate was abated and residual fluoride concentration satisfies the WHO standard (CF < 1.5 mg L(-1)). Spectrometric analyses performed on aluminum flocs indicated that these are mainly composed of aluminum-silicates of calcium and magnesium. Arsenate removal by EC involves adsorption on aluminum flocs, while fluoride replaces a hydroxyl group from aluminum aggregates. The best EC was obtained at 4 mA cm(-2) and 1.82 cm s(-1) with electrolytic energy consumption of 0.34 KWh m(-3).


Assuntos
Alumínio/química , Arsênio/química , Eletrólise/métodos , Fluoretos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Eletrodos , Eletrólise/instrumentação , Água Subterrânea/química , México , Purificação da Água/instrumentação
15.
Biomed Tech (Berl) ; 60(2): 105-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25389977

RESUMO

Titanium-based alloys can be actively brazed onto bio-inert ceramics and potentially be used as biocompatible coatings. To further improve their bioactivity in vivo, introduction of calcium phosphate (CaP)-based granulates onto their surface layer is possible. For this, mechanically stable CaP-based granulates need to be able to withstand the demand of the brazing process. In this study, spherical granulates, made of a calcium phosphate composite composed primarily of ß-tricalcium phosphate and hydroxyapatite, a bioactive glass, and a mixture of the previous two, were manufactured by spray drying. The influence of organic additives (Dolapix CE64, trisodium citrate) and solids content (30-80 wt%) in the slurry on the physical characteristics of granulates was investigated. X-ray diffraction, Brunauer, Emmett, Teller specific surface area standard method, scanning electron microscopy, granulate size analysis, and single granule strength were performed. Our results showed that trisodium citrate permitted the production of granulates with regular morphology, high density, and increased failure stress values. The strong granules also withstood the brazing process. These results show that CaP bioactive agents can be generated and be integrated during the demanding metallurgical processes, allowing for one-step bioactivation of metal brazes.


Assuntos
Fosfatos de Cálcio/química , Cerâmica/química , Citratos/química , Materiais Revestidos Biocompatíveis/química , Titânio/química , Ligas , Vidro/química , Difração de Raios X
16.
Environ Sci Pollut Res Int ; 21(14): 8485-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24737017

RESUMO

This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9 ≤ u ≤ 10.4 and 1.2 ≤ u ≤ 13.9 cm s(-1) for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm(-2). The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(·OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed.


Assuntos
Corantes/química , Índigo Carmim/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Boro/química , Diamante/química , Eletroquímica , Eletrodos , Eletrólise , Filtração , Radical Hidroxila/química , Oxidantes/química , Oxirredução , Água/química
17.
Chemosphere ; 81(1): 26-32, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20709357

RESUMO

This paper explores the applicability of electrochemical oxidation on a triphenylmethane dye compound model, hexamethylpararosaniline chloride (or crystal violet, CV), using BDD anodes. The effect of the important electrochemical parameters: current density (2.5-15 m A cm(-2)), dye concentration (33-600 mg L(-1)), sodium sulphate concentration (7.1-50.0 g L(-1)) and initial pH (3-11) on the efficiency of the electrochemical process was evaluated. The results indicated that while the current density was lower than the limiting current density, no side products (hydrogen peroxide, peroxodisulphate, ozone and chlorinated oxidizing compounds) were generated and the degradation, through OH radical attack, occurred with high efficiency. Analysis of intermediates using GC-MS investigation identified several products: N-methylaniline, N,N-dimethylaniline, 4-methyl-N,N-dimethylaniline, 4-methyl-N-methylaniline, 4-dimethylaminophenol, 4-dimethylaminobenzoic acid, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) diphenylmethane, 4-(4-dimethylaminophenyl)-N,N-dimethylaniline, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) benzophenone. The presence of these aromatic structures showed that the main CV degradation pathway is related to the reaction of CV with the OH radical. Under optimal conditions, practically 100% of the initial substrate and COD were eliminated in approximately 35 min of electrolysis; indicating that the early CV by-products were completely degraded by the electrochemical system.


Assuntos
Corantes/química , Técnicas Eletroquímicas , Poluentes Ambientais/química , Recuperação e Remediação Ambiental/métodos , Violeta Genciana/química , Boro/química , Diamante/química , Eletrodos , Poluentes Ambientais/análise , Compostos Orgânicos/análise , Compostos Orgânicos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA