Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2862, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536551

RESUMO

In the Fe-doped GaN phase-separated magnetic semiconductor Ga[Formula: see text]FeN, the presence of embedded [Formula: see text]-[Formula: see text]N nanocrystals determines the magnetic properties of the system. Here, through a combination of anomalous X-ray diffraction and diffraction anomalous fine structure, the local structure of Ga in self-assembled face-centered cubic (fcc) [Formula: see text]-[Formula: see text]N nanocrystals embedded in wurtzite GaN thin layers is investigated in order to shed light onto the correlation between fabrication parameters, local structural arrangement and overall magnetic properties of the material system. It is found, that by adjusting the growth parameters and thus, the crystallographic surroundings, the Ga atoms can be induced to incorporate into 3c positions at the faces of the fcc crystal lattice, reaching a maximum occupancy of 30%. The magnetic response of the embedded nanocrystals is ferromagnetic with Curie temperature increasing from 450 to 500 K with the Ga occupation. These results demonstrate the outstanding potential of the employed experimental protocol for unravelling the local structure of magnetic multi-phase systems, even when embedded in a matrix containing the same element under investigation.

2.
Ultramicroscopy ; 233: 113427, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34990906

RESUMO

Photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM) can easily distinguish between organic molecules adsorbed in crystallites or in the wetting layers as well as the bare metal substrate due to their different electronic properties. Already before (and during) the condensation of such solid phases (2D islands or 3D crystallites), there is a dilute 2D gas phase. Such a 2D gas phase consists of molecules, which are highly mobile and diffuse across the surface. The individual molecules are too small to be resolved in PEEM/LEEM images. Here, we discuss, how image features below and above the resolution limit of a PEEM/LEEM affect the mean electron yield and its (normalized) standard deviation. We support our findings with two experimental examples: the deposition of cobalt phthalocyanine (CoPc) on Ag(100) and of perfluoro-pentacene on Ag(110). Our results demonstrate, how a spatial and temporal analysis of image series can be used to obtain information about molecular phases, which cannot be directly resolved in microscopy images.

3.
Materials (Basel) ; 13(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722094

RESUMO

Phase-separated semiconductors containing magnetic nanostructures are relevant systems for the realization of high-density recording media. Here, the controlled strain engineering of Ga δ FeN layers with Fe y N embedded nanocrystals (NCs) via Al x Ga 1 - x N buffers with different Al concentration 0 < x Al < 41 % is presented. Through the addition of Al to the buffer, the formation of predominantly prolate-shaped ε -Fe 3 N NCs takes place. Already at an Al concentration x Al ≈ 5% the structural properties-phase, shape, orientation-as well as the spatial distribution of the embedded NCs are modified in comparison to those grown on a GaN buffer. Although the magnetic easy axis of the cubic γ '-Ga y Fe 4 - y N nanocrystals in the layer on the x Al = 0 % buffer lies in-plane, the easy axis of the ε -Fe 3 N NCs in all samples with Al x Ga 1 - x N buffers coincides with the [ 0001 ] growth direction, leading to a sizeable out-of-plane magnetic anisotropy and opening wide perspectives for perpendicular recording based on nitride-based magnetic nanocrystals.

4.
J Phys Chem C Nanomater Interfaces ; 122(24): 12704-12711, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29963216

RESUMO

Perfluoropentacene (PFP) is an organic material that has been widely studied over the last years and has already found applications in organic electronics. However, fundamental physical questions, such as the structural formation and the preferential orientation of the molecules during deposition on metal surfaces, are still not fully understood. In this work, we report on a unique in-plane molecular reorientation during the completion of the first monolayer of PFP on the Ag(110) surface. To characterize the molecular alignment, we have monitored the deposition process in real time using polarization-dependent differential reflectance spectroscopy and reflectance anisotropy spectroscopy. Abrupt changes in the optical signals reveal an intricate sequence of reorientation transitions of the PFP molecules upon monolayer completion and during the formation of the second monolayer, eventually leading to a full alignment of the long molecular axis along the [001] direction of the substrate and an enhanced structural ordering. Scanning tunneling microscopy and low-energy electron diffraction confirm the observed molecular reorientation upon monolayer compression and provide further details on the structural and orientational ordering of the PFP monolayer before and after compression.

5.
Sci Rep ; 2: 722, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056914

RESUMO

Owing to the variety of possible charge and spin states and to the different ways of coupling to the environment, paramagnetic centres in wide band-gap semiconductors and insulators exhibit a strikingly rich spectrum of properties and functionalities, exploited in commercial light emitters and proposed for applications in quantum information. Here we demonstrate, by combining synchrotron techniques with magnetic, optical and ab initio studies, that the codoping of GaN:Mn with Mg allows to control the Mn(n+) charge and spin state in the range 3≤n≤5 and 2≥S≥1. According to our results, this outstanding degree of tunability arises from the formation of hitherto concealed cation complexes Mn-Mg(k), where the number of ligands k is pre-defined by fabrication conditions. The properties of these complexes allow to extend towards the infrared the already remarkable optical capabilities of nitrides, open to solotronics functionalities, and generally represent a fresh perspective for magnetic semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA