Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 138: 105575, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470112

RESUMO

The characterization of soft tissues remains a vital need for various bioengineering and medical fields. Developing areas such as regenerative medicine, robot-aided surgery, and surgical simulations all require accurate knowledge about the mechanical properties of soft tissues to replicate their mechanics. Mechanical properties can be characterized through several different characterization techniques such as atomic force microscopy, compression testing, and tensile testing. However, many of these methods contain considerable differences in ability to accurately characterize the mechanical properties of soft tissues. As a result of these variations, there are often discrepancies in the reported values for numerous studies. This paper reviews common characterization methods that have been applied to obtain the mechanical properties of soft tissues and highlights their advantages as well as disadvantages. The limitations, accuracies, repeatability, in-vivo testing capability, and types of properties measurable for each method are also discussed.


Assuntos
Medicina Regenerativa , Microscopia de Força Atômica
2.
J Mech Behav Biomed Mater ; 138: 105581, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463810

RESUMO

Obtaining the mechanical properties of soft tissues is critical in many medical fields, such as regenerative medicine and surgical simulation training. Although various tissue-characterization methods have been developed, such as AFM, indentation, and elastography, there remain some limitations on their accuracy and validity for measuring small and fragile soft tissues. This paper presents a tensile testing technique to measure the mechanical properties of soft tissues directly and accurately. Tensile testing was chosen as the primary method because of its simple procedure and ability to derive mechanical properties without requiring many assumptions or complicated models. However, tensile testing on soft tissues presents challenges related to gripping the tissue sample without affecting its inherent properties, applying minuscule forces to the sample, and measuring the cross-section area and strain of the sample. To solve these issues, this study presents a sub-micro scale tensile testing system that uses a flexure mechanism and a novel 3D-printed sample holder for gripping the tissue samples. The system also measures tested samples' cross-section area and strain using two high-resolution cameras. The system was validated by testing standard materials and used to characterize the elastic modulus, yield stress, and yield strain of lung tissue slices from six different mice. The results from the validation tests showed a less than 2.5% error for elastic modulus values measured using the tensile tester. At the same time, results from the mice lung tissue measurements revealed qualitative findings that closely matched those seen in the literature and displayed low coefficient of variation values, demonstrating the high repeatability of the system.


Assuntos
Técnicas de Imagem por Elasticidade , Fenômenos Mecânicos , Animais , Camundongos , Módulo de Elasticidade , Medicina Regenerativa , Impressão Tridimensional , Resistência à Tração , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA